From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs.

نویسندگان

  • Ditte G Christiansen
  • Heinz-Ulrich Reyer
چکیده

Speciation via interspecific hybrids is very rare in animals, as compared to plants. Whereas most plants overcome the problem of meiosis between different chromosome sets by tetraploidization, animal hybrids often escape hybrid sterility by clonal reproduction. This comes at the expense of genetic diversity and the ability to purge deleterious mutations. However, here we show that all-hybrid populations of diploid (LR) and triploid (LLR and LRR) water frogs (Pelophylax esculentus) have secondarily acquired sexual reproduction. First, in a crossing experiment analyzed with microsatellite markers, triploid hybrids of both sexes and genotypes (LLR and LRR) recombined their homospecific genomes. Second, the great majority of natural populations investigated had low multilocus linkage disequilibrium, indicating a high recombination rate. As predicted from mating system models, the L genome had constant, low levels of linkage disequilibrium, whereas linkage disequilibrium in the R genome showed a significant reduction with increasing proportion of recombining triploids. This direct evidence of sexual reproduction in P. esculentus calls for a change of the conventional view of hybridogens as clonally reproducing diploids. Rather, hybridogens can be independent sexually reproducing units with an evolutionary potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gamete production patterns, ploidy, and population genetics reveal evolutionary significant units in hybrid water frogs (Pelophylax esculentus)

The European water frog Pelophylax esculentus is a natural hybrid between P. lessonae (genotype LL) and P. ridibundus (RR). It reproduces through hybridogenesis, eliminating one parental genome from its germline and producing gametes containing the genome of the other parental species. According to previous studies, this elimination and transmission pattern is very diverse. In mixed populations...

متن کامل

Genetic diversity in water frog hybrids (Pelophylax esculentus) varies with population structure and geographic location.

Pelophylax esculentus is a hybridogenetic frog originating from matings between P. ridibundus (RR) and P. lessonae (LL). Typically, diploid hybrids (LR) live in sympatry with one of their parental species, upon which they depend for successful reproduction. In parts of their range, however, pure hybrid populations can be found. These hybrid populations have achieved reproductive independence fr...

متن کامل

Contrasting reproductive strategies of triploid hybrid males in vertebrate mating systems.

The scarcity of parthenogenetic vertebrates is often attributed to their 'inferior' mode of clonal reproduction, which restricts them to self-reproduce their own genotype lineage and leaves little evolutionary potential with regard to speciation and evolution of sexual reproduction. Here, we show that for some taxa, such uniformity does not hold. Using hybridogenetic water frogs (Pelophylax esc...

متن کامل

Deleterious alleles and differential viability in progeny of natural hemiclonal frogs.

Abstract.-Spontaneous deleterious mutations are expected to accumulate through Muller's ratchet in clonally reproducing organisms and may lead to their extinction. We study deleterious mutations and their effects in a system of European frogs. Rana esculenta (RL), natural hybrids R. ridibunda (RR) X R. lessonae (LL), reproduce hemiclonally; both sexes exclude the L genome in the germ line and p...

متن کامل

Mitochondrial DNA reveals formation of nonhybrid frogs by natural matings between hemiclonal hybrids.

The European water frog Rana esculenta (RL), a natural hybrid between R. ridibunda (RR) and R. lessonae (LL), reproduces by hybridogenesis: haploid gametes usually contain an intact chromosome set of R. ridibunda (R); the lessonae nuclear genome (L) is lost from the germ line. Hybridity is restored in the next generation, via fertilization by syntopic R. lessonae. Matings between two hybrids (R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 63 7  شماره 

صفحات  -

تاریخ انتشار 2009