Directed Ramsey number for trees
نویسندگان
چکیده
In this paper, we study Ramsey-type problems for directed graphs. We first consider the k-colour oriented Ramsey number of H, denoted by − →r (H, k), which is the least n for which every k-edgecoloured tournament on n vertices contains a monochromatic copy of H. We prove that − →r (T, k) ≤ ck|T |k for any oriented tree T . This is a generalisation of a similar result for directed paths by Chvátal and by Gyárfás and Lehel, and answers a question of Yuster. In general, it is tight up to a constant factor. We also consider the k-colour directed Ramsey number ←→r (H, k) of H, which is defined as above, but, instead of colouring tournaments, we colour the complete directed graph of order n. Here we show that←→r (T, k) ≤ ck|T |k−1 for any oriented tree T , which is again tight up to a constant factor, and it generalises a result by Williamson and by Gyárfás and Lehel who determined the 2-colour directed Ramsey number of directed paths.
منابع مشابه
The Ramsey numbers of large trees versus wheels
For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.
متن کاملStar-Avoiding Ramsey Numbers
The graph Ramsey number R(G,H) is the smallest integer n such that every 2-coloring of the edges of Kn contains either a red copy of G or a blue copy of H . We find the largest star that can be removed from Kn such that the underlying graph is still forced to have a red G or a blue H . Thus, we introduce the star-avoiding Ramsey number r∗(G,H) as the smallest integer k such that every 2-colorin...
متن کاملA method for analyzing the problem of determining the maximum common fragments of temporal directed tree, that do not change with time
In this study two actual types of problems are considered and solved: 1) determining the maximum common connected fragment of the T-tree (T-directed tree) which does not change with time; 2) determining all maximum common connected fragments of the T-tree (T-directed tree) which do not change with time. The choice of the primary study of temporal directed trees and trees is justified by the wid...
متن کاملOn the Size-Ramsey Number of Hypergraphs
The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we cons...
متن کاملStar-critical Ramsey numbers
The graph Ramsey number R(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H . We find the largest star that can be removed from Kr such that the underlying graph is still forced to have a red G or a blue H . Thus, we introduce the star-critical Ramsey number r∗(G,H) as the smallest integer k such that every 2-colorin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 61 شماره
صفحات -
تاریخ انتشار 2017