un 2 00 2 FRAMED AND ORIENTED LINKS OF CODIMENSION 2

نویسنده

  • JIANHUA WANG
چکیده

Sanderson [12] gave an isomorphism θ : πm(∨ r i=1S 2 i ) −→ πm(∨ r+1 i=1 CP∞ i ). In this paper we construct for any subset σ ⊂ {1, 2, · · · , r} an isomorphism θσ from πm(∨ r i=1S 2 i ) to πm(∨ r+1 i=1 CP∞ i ). The inclusion S ∨ S →֒ CP∞ ∨ CP∞ induces a homomorphism f : πm(S 2 ∨ S) −→ πm(CP ∞ ∨ CP∞). We also compute f by evaluating f on each factor in the Hilton splitting of πm(S 2 ∨ S), the results in [12] concerning the case m = 4 are generalized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 02 05 30 0 v 2 [ m at h . G T ] 1 J un 2 00 2 FRAMED AND ORIENTED LINKS OF CODIMENSION 2

Sanderson [12] gave an isomorphism θ : πm(∨ r i=1S 2 i ) −→ πm(∨ r+1 i=1 CP∞ i ). In this paper we construct for any subset σ ⊂ {1, 2, · · · , r} an isomorphism θσ from πm(∨ r i=1S 2 i ) to πm(∨ r+1 i=1 CP∞ i ). The inclusion S ∨ S →֒ CP∞ ∨ CP∞ induces a homomorphism f : πm(S 2 ∨ S) −→ πm(CP ∞ ∨ CP∞). We also compute f by evaluating f on each factor in the Hilton splitting of πm(S 2 ∨ S).

متن کامل

2 8 M ay 2 00 2 FRAMED AND ORIENTED LINKS OF CODIMENSION 2

Sanderson [12] gave an isomorphism θ : πm(∨ r i=1S 2 i ) −→ πm(∨ r+1 i=1 CP∞ i ). In this paper we construct for any subset σ ⊂ {1, 2, · · · , r} an isomorphism θσ from πm(∨ r i=1S 2 i ) to πm(∨ r+1 i=1 CP∞ i ). The inclusion S ∨ S →֒ CP∞ ∨ CP∞ induces a homomorphism f : πm(S 2 ∨ S) −→ πm(CP ∞ ∨ CP∞). We also compute f by evaluating f on each factor in the Hilton splitting of πm(S 2 ∨ S).

متن کامل

ar X iv : 0 70 5 . 41 66 v 1 [ m at h . G T ] 2 9 M ay 2 00 7 CLASSIFICATION OF FRAMED LINKS IN 3 - MANIFOLDS

We present a short proof of the following Pontryagin theorem, whose original proof was complicated and has never been published in details: Theorem. Let M be a connected oriented closed smooth 3-manifold. Let L1(M) be the set of framed links in M up to a framed cobordism. Let deg : L1(M) → H1(M ;Z) be the map taking a framed link to its homology class. Then for each α ∈ H1(M ;Z) there is a 1-1 ...

متن کامل

ar X iv : 0 70 5 . 41 66 v 2 [ m at h . G T ] 1 2 Ju n 20 07 CLASSIFICATION OF FRAMED LINKS IN 3 - MANIFOLDS

We present a short complete proof of the following Pontryagin theorem, whose original proof was complicated and has never been published in details: Let M be a connected oriented closed smooth 3-manifold, L1(M) be the set of framed links in M up to a framed cobordism, and deg : L1(M) → H1(M ;Z) be the map taking a framed link to its homology class. Then for each α ∈ H1(M ;Z) there is a 1-1 corr...

متن کامل

6 v 1 6 J an 1 99 4 THE UNIVERSAL VASSILIEV - KONTSEVICH INVARIANT FOR FRAMED ORIENTED LINKS

We give a generalization of the Reshetikhin-Turaev functor for tangles to get a combinatorial formula for the Kontsevich integral for framed oriented links. The uniqueness of the universal Vassiliev-Kontsevich invariant of framed oriented links is established. As a corollary one gets the rationality of Kontsevich integral.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002