Demineralized Freeze-Dried Bovine Cortical Bone: Its Potential for Guided Bone Regeneration Membrane
نویسندگان
چکیده
BACKGROUND Bovine pericardium collagen membrane (BPCM) had been widely used in guided bone regeneration (GBR) whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. OBJECTIVE This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. MATERIAL AND METHODS Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM) was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat's subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. RESULT DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. CONCLUSION Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.
منابع مشابه
Comparative Effectiveness of Bone Grafting Using Xenograft Freeze-Dried Cortical Bovine, Allograft Freeze-Dried Cortical New Zealand White Rabbit, Xenograft Hydroxyapatite Bovine, and Xenograft Demineralized Bone Matrix Bovine in Bone Defect of Femoral Diaphysis of White Rabbit: Experimental Study In Vivo
Autogenous bone graft is gold standard in treating bone defects, but it might have difficulty in corporation and rejection reaction. This study is to compare the effectiveness among freeze-dried xenograft, freeze-dried allograft, hydroxyapatite xenograft, and demineralized bone matrix xenograft as bone graft to fill bone defect in femoral diaphysis of white rabbit. Thirty male New Zealand white...
متن کاملThe effect of freeze-dried bone allograft and partially demineralized freeze-dried bone allograft on regeneration of rabbit calvarial bone defects: A Histological and histomorphometric study
Background and Aims: Reconstruction of osseous defects is one of the ideal goals of periodontal treatments and dental implant therapy. Different biomaterials have been used for this purpose and many studies have tried to compare and introduce the best ones. The present study aimed to evaluate the effect of PDFDB (Partially Demineralized Freeze-Dried Bone Graft) and FDBA (Freeze Dried Bone Allog...
متن کاملBone regeneration effects of human allogenous bone substitutes: a preliminary study
PURPOSE The purpose of this study was to compare the bone regeneration effects of cortical, cancellous, and cortico-cancellous human bone substitutes on calvarial defects of rabbits. METHODS Four 8-mm diameter calvarial defects were created in each of nine New Zealand white rabbits. Freeze-dried cortical bone, freeze-dried cortico-cancellous bone, and demineralized bone matrix with freeze-dri...
متن کاملTissue response to a membrane of demineralized bovine cortical bone implanted in the subcutaneous tissue of rats.
The treatment of persistent bone defects has encouraged the search for proper techniques or bone substitutes. In Dentistry, a common problem in the treatment of periodontal bone defects is the growth of tissues within the lesion, such as the junctional epithelium, which impair regeneration of these tissues. Guided tissue regeneration (GTR), based on the separation of the tissues by means of mem...
متن کاملRegeneration of standardized mandibular bone defects using expanded polytetrafluoroethylene membrane and various bone fillers.
The purpose of this study was to evaluate the new bone formation and biodegradability of various bone fillers placed underneath a nonresorbable membrane (expanded polytetrafluoroethylene [e-PTFE]) in standardized defects in a beagle dog model. Mandibular premolars and first molars were extracted bilaterally in six adult female beagle dogs. Three months after the extractions, six rectangular def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017