Monoaural Audio Source Separation Using Deep Convolutional Neural Networks

نویسندگان

  • Pritish Chandna
  • Marius Miron
  • Jordi Janer
  • Emilia Gómez
چکیده

In this paper we introduce a low-latency monaural source separation framework using a Convolutional Neural Network (CNN). We use a CNN to estimate time-frequency soft masks which are applied for source separation. We evaluate the performance of the neural network on a database comprising of musical mixtures of three instruments: voice, drums, bass as well as other instruments which vary from song to song. The proposed architecture is compared to a Multilayer Perceptron (MLP), achieving on-par results and a significant improvement in processing time. The algorithm was submitted to source separation evaluation campaigns to test efficiency, and achieved competitive results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Resolution Fully Convolutional Neural Networks for Monaural Audio Source Separation

In deep neural networks with convolutional layers, each layer typically has fixed-size/single-resolution receptive field (RF). Convolutional layers with a large RF capture global information from the input features, while layers with small RF size capture local details with high resolution from the input features. In this work, we introduce novel deep multi-resolution fully convolutional neural...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Monaural Score-Informed Source Separation for Classical Music Using Convolutional Neural Networks

Score information has been shown to improve music source separation when included into non-negative matrix factorization (NMF) frameworks. Recently, deep learning approaches have outperformed NMF methods in terms of separation quality and processing time, and there is scope to extend them with score information. In this paper, we propose a score-informed separation system for classical music th...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017