The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter.

نویسندگان

  • Christopher Mulligan
  • Eric R Geertsma
  • Emmanuele Severi
  • David J Kelly
  • Bert Poolman
  • Gavin H Thomas
چکیده

Substrate-binding protein-dependent secondary transporters are widespread in prokaryotes and are represented most frequently by members of the tripartite ATP-independent periplasmic (TRAP) transporter family. Here, we report the membrane reconstitution of a TRAP transporter, the sialic acid-specific SiaPQM system from Haemophilus influenzae, and elucidate its mechanism of energy coupling. Uptake of sialic acid via membrane-reconstituted SiaQM depends on the presence of the sialic acid-binding protein, SiaP, and is driven by the electrochemical sodium gradient. The interaction between SiaP and SiaQM is specific as transport is not reconstituted using the orthologous sialic acid-binding protein VC1779. Importantly, the binding protein also confers directionality on the transporter, and reversal of sialic acid transport from import to export is only possible in the presence of an excess of unliganded SiaP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structures of an Extracytoplasmic Solute Receptor from a TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a cation for alpha-keto acid binding

Background: The import of solutes into the bacterial cytoplasm involves several types of membrane transporters, which may be driven by ATP hydrolysis (ABC transporters) or by an ion or H+ electrochemical membrane potential, as in the tripartite ATP-independent periplasmic system (TRAP). In both the ABC and TRAP systems, a specific periplasmic protein from the ESR family (Extracytoplasmic Solute...

متن کامل

An anion binding site that regulates the glutamate transporter of synaptic vesicles.

Glutamate, the major excitatory neurotransmitter of the mammalian central nervous system, is stored in synaptic vesicles and released by exocytosis upon depolarization of the presynaptic nerve terminal. Synaptic vesicles possess an active glutamate-specific transporter that is driven by an electrochemical proton gradient across the vesicle membrane and requires chloride for maximal activity. In...

متن کامل

Functional reconstitution of SdcS, a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus.

In Staphylococcus aureus, the transport of dicarboxylates is mediated in part by the Na+-linked carrier protein SdcS. This transporter is a member of the divalent-anion/Na+ symporter (DASS) family, a group that includes the mammalian Na+/dicarboxylate cotransporters NaDC1 and NaDC3. In earlier work, we cloned and expressed SdcS in Escherichia coli and found it to have transport properties simil...

متن کامل

Porters and neurotransmitter transporters.

Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma membrane transporters are driven by an electrochemical gradient of sodium generated by a Na+/K(+)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 6  شماره 

صفحات  -

تاریخ انتشار 2009