Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity.
نویسندگان
چکیده
The transcription factor family member NFAT plays an important role in the regulation of osteoclast differentiation. However, the role of NFAT in osteoclasts in vivo is still not fully understood. Thus, we generated transgenic mice in which constitutively active-NFAT1/NFATc2 (CA-NFAT1) is specifically expressed in the osteoclast lineage, using the tartrate-resistant acid phosphatase gene promoter. Both x-ray and histological analyses demonstrated an osteopenic bone phenotype in the CA-NFAT1 transgenic mice, whereas the number of tartrate-resistant acid phosphatase-positive osteoclasts was markedly higher in the long bones of these mice. Furthermore, the bone-resorbing activity of mature osteoclasts derived from the transgenic mice was much higher than that of wild-type mice. Interestingly, the introduction of CA-NFAT1 into osteoclasts or RAW264 cells increased the expression and activity of c-Src and stimulated actin ring formation. In contrast, CA-NFAT1 or GFP-tagged VIVIT peptide, a specific inhibitor of NFAT, did not affect the survival of mature osteoclasts. Collectively, our data indicate that NFAT controls bone resorption in vivo by stimulating the differentiation and functioning of osteoclasts but not their survival.
منابع مشابه
ADAM8 Enhances Osteoclast Precursor Fusion and Osteoclast Formation In Vitro and In Vivo
ADAM8 expression is increased in the interface tissue around a loosened hip prosthesis and in the pannus and synovium of patients with rheumatoid arthritis, but its potential role in these processes is unclear. ADAM8 stimulates osteoclast (OCL) formation, but the effects of overexpression or loss of expression of ADAM8 in vivo and the mechanisms responsible for the effects of ADAM8 on osteoclas...
متن کاملTRAF family member-associated NF-κB activator (TANK) is a negative regulator of osteoclastogenesis and bone formation.
The differentiation of bone-resorbing osteoclasts is induced by RANKL signaling, and leads to the activation of NF-κB via TRAF6 activation. TRAF family member-associated NF-κB activator (TANK) acts as a negative regulator of Toll-like receptors (TLRs) and B-cell receptor (BCR) signaling by inhibiting TRAF6 activation. Tank(-/-) mice spontaneously develop autoimmune glomerular nephritis in an IL...
متن کاملTREM2 and b-Catenin Regulate Bone Homeostasis by Controlling the Rate of Osteoclastogenesis
TREM2 is an immunoreceptor expressed on osteoclasts (OC) and microglia that transmits intracellular signals through the adaptor DAP12. Individuals with genetic mutations inactivating TREM2 or DAP12 develop the Nasu–Hakola disease (NHD) with cystic-like lesions of the bone and brain demyelination that lead to fractures and presenile dementia. The mechanisms of this disease are poorly understood....
متن کاملEthanol Extracts of Fresh Davallia formosana (WL1101) Inhibit Osteoclast Differentiation by Suppressing RANKL-Induced Nuclear Factor-κB Activation
The rhizome of Davallia formosana is commonly used to treat bone disease including bone fracture, arthritis, and osteoporosis in Chinese herbal medicine. Here, we report the effects of WL1101, the ethanol extracts of fresh rhizomes of Davallia formosana on ovariectomy-induced osteoporosis. In addition, excess activated bone-resorbing osteoclasts play crucial roles in inflammation-induced bone l...
متن کاملNADPH oxidase 4 limits bone mass by promoting osteoclastogenesis.
ROS are implicated in bone diseases. NADPH oxidase 4 (NOX4), a constitutively active enzymatic source of ROS, may contribute to the development of such disorders. Therefore, we studied the role of NOX4 in bone homeostasis. Nox4(-/-) mice displayed higher bone density and reduced numbers and markers of osteoclasts. Ex vivo, differentiation of monocytes into osteoclasts with RANKL and M-CSF induc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 177 4 شماره
صفحات -
تاریخ انتشار 2006