Interactions of nanoparticles and surfaces

نویسندگان

  • Florian Merkt
  • Paul Leiderer
  • Thomas Dekorsy
چکیده

The adhesion forces of microto nanoscopic particles on surfaces are the main topic of this dissertation. As a model system, the contact between colloidal particles and smooth silicon and glass substrates are investigated. To achieve information about their adhesion forces, particles are detached from the substrates on the timescale of tens of nanoseconds. For this purpose a laser is focussed on the back side of the sample. There a plasma is generated, which evokes a shock wave that travels through the wafer. The concomitant elongation of the front surface which is of the order of tens of nanometers leads to the detachment of the particles. The particle diameters range from 0.25 μm to 20 μm for silica and from 0.3 μm to 5 μm for polystyrene particles. Since this procedure is a means to clean surfaces, it is called acoustic laser cleaning. For particles larger than 2 μm the threshold of the laser intensity is almost independent of the particle diameter. For smaller particles the threshold steeply rises with decreasing diameter. Particles with a diameter of 840 nm adhere to silicon with a force of about 300 nN. All particles lift off with velocities between 10 m s−1 and 60 m s−1. For example 0.9 μm large SiO2 particles stop in air after an estimated flight distance of 27 μm. Thereafter, convection, electric fields and gravitation determine their trajectories. For larger particles gravitation becomes the determinant. It exceeds the van der Waals forces for spherical glass beads with diameters of about 120 μm, when the silicon substrates are put upside down. Because electrostatic forces influence the adhesion and detachment in all these experiments, the typical charge of particles with a diameter of 1.28 μm was estimated to be 20 elementary charges in a Millikan setup. When a laser hits the front side of a sample, surface acoustic waves (SAW) reveal a characteristic detachment pattern that reflects the symmetry of the surface. Since we did not observe such a pattern on the front side in acoustic laser cleaning, SAW do not seem to play a role there. Instead, for illumination of the back side phonon focussing of bulk acoustic waves that propagate through the silicon wafer can be found. Two theoretical models have been developed to better understand the detachment dynamics. A simple spring model accounts qualitatively for the detachment. A more elaborate model by Martin Schlipf includes the deformation of the particles and derives the force on them numerically. Both models yield particle velocities that are maximally twice the maximum surface velocity. In contrast the experiments result in velocities that are two to ten times higher. This difference has not been explained yet. The second focus of this work are capped colloids in laser tweezers. Half of the surface of these particles has been coated with metals. Capped SiO2 particles with diameters of 4.7 μm can be dragged around in water at their transparent half like uncoated particles. Above a critical laser power in the optical tweezers of about 4 mW, they start to rotate spontaneously in front of a surface at a frequency of about 1 Hz. The frequency increases linearly until a threshold of about 7 mW is reached, where the particles jump out of the focus. Light pressure is identified as the driving force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrophilicity and antibacterial properties of Ag / TiO2 nanoparticle

TiO2 thin films and Ag/TiO2 nanoparticles were prepared by CVD and plasma bombardment method. XRD results showed the presence of Ag nanoparticles in TiO2 matrix. SEM image confirmed formation of Ag nanoparticles. XPS analysis was utilized to study the chemical state of the Ag/TiO2 nanostructure. Statistical surface analysis revealed that since there i...

متن کامل

Electrostatically tuned interactions in silica microsphere-polystyrene nanoparticle mixtures.

We explore the generality of nanoparticle haloing as a novel colloidal stabilization mechanism in binary mixtures of silica microspheres and polystyrene nanoparticles. By selectively tuning their electrostatic interactions, both the initial microsphere stability and the role of nanoparticle additions are varied. Adsorption isotherm and zeta potential measurements indicate that highly charged na...

متن کامل

The van der Waals Interactions of n‐Alkanethiol‐Covered Surfaces: From Planar to Curved Surfaces

The van der Waals (vdW) interactions of n-alkanethiols (ATs) adsorbed on planar Au(111) and Au(100) surfaces and curved Au nanoparticles of different diameters are reported. By means of electrochemical measurements and molecular dynamic calculations, the increase in the average geometrical curvature of the surface influences the global interactions, that is, decreasing vdW interactions between ...

متن کامل

Dispersing nanoparticles in a polymer matrix: are long, dense polymer tethers really necessary?

Dispersing nanoparticles in a polymer matrix is intrinsically challenging because of unfavorable entropic interactions between the matrix and the nanoparticle. Similar to suspensions of larger colloidal particles, it has been found that thermodynamically stable dispersions of nanoparticles can be achieved in polymer matrices when the nanoparticles are decorated with dense layers of polymer teth...

متن کامل

Selective control of surface properties using hydrodynamic interactions.

Using computational modeling, we design nano-structured surfaces able to selectively regulate interactions between microchannel walls and flowing colloid-polymer suspensions. Depending on the geometry of nanoscopic posts lining internal channel surfaces, suspended nanoparticles and polymeric chains can be either hydrodynamically attracted to channel walls or repelled to the bulk fluid.

متن کامل

Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters.

Potential energy surfaces are the central concept in understanding the assembly of molecules; atoms form molecules via covalent bonds with structures defined by the stationary points of the surfaces. Similarly, dispersion interactions give Lennard-Jones potentials that describe atomic clusters and liquids. The formation of molecules and clusters can follow various pathways depending on the init...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008