The Brauer group of Burnside rings
نویسنده
چکیده
The Brauer group of a commutative ring is an important invariant of a commutative ring, a common journeyman to the group of units and the Picard group. Burnside rings of finite groups play an important rôle in representation theory, and their groups of units and Picard groups have been studied extensively. In this short note, we completely determine the Brauer groups of Burnside rings: they vanish.
منابع مشابه
Burnside-Brauer Theorem for Table Algebras
In the character theory of finite groups the Burnside-Brauer Theorem is a wellknown result which deals with products of characters in finite groups. In this paper, we first define the character products for table algebras and then by observing the relationship between the characters of a table algebra and the characters of its quotient, we provide a condition in which the products of characters...
متن کاملThe slice Burnside ring and the section Burnside ring of a finite group
This paper introduces two new Burnside rings for a finite group G, called the slice Burnside ring and the section Burnside ring. They are built as Grothendieck rings of the category of morphisms of G-sets, and of Galois morphisms of G-sets, respectively. The well known results on the usual Burnside ring, concerning ghost maps, primitive idempotents, and description of the prime spectrum, are ex...
متن کامل. R A ] 1 6 N ov 2 00 4 q - DEFORMATION OF WITT - BURNSIDE RINGS
In this paper we construct a q-deformation of the Witt-Burnside ring of a profinite group over a commutative ring, where q ranges over the ring of integers. When q = 1, this coincides with the Witt-Burnside ring introduced by A. To achieve our goal we show that there exists a q-deformation of the necklace ring of a profinite group over a commutative ring. As in the classical case, i.e., the cas...
متن کاملBurnside-Brauer Theorem and Character Products in Table Algebras
In this paper, we first show that the irreducible characters of a quotient table algebra modulo a normal closed subset can be viewed as the irreducible characters of the table algebra itself. Furthermore, we define the character products for table algebras and give a condition in which the products of two characters are characters. Thereafter, as a main result we state and prove the Burnside-Br...
متن کاملGeneralized Burnside rings and group cohomology
We define the cohomological Burnside ring B(G,M) of a finite group G with coefficients in a ZG-module M as the Grothendieck ring of the isomorphism classes of pairs [X, u] where X is a G-set and u is a cohomology class in a cohomology group H X(G,M). The cohomology groups H ∗ X(G,M) are defined in such a way that H∗ X(G, M) ∼= ⊕iH∗(Hi,M) when X is the disjoint union of transitive G-sets G/Hi. I...
متن کامل