Synaptic regulation of the slow Ca2+-activated K+ current in hippocampal CA1 pyramidal neurons: implication in epileptogenesis.
نویسندگان
چکیده
The slow Ca2+-activated K+ current (sI(AHP)) plays a critical role in regulating neuronal excitability, but its modulation during abnormal bursting activity, as in epilepsy, is unknown. Because synaptic transmission is enhanced during epilepsy, we investigated the synaptically mediated regulation of the sI(AHP) and its control of neuronal excitability during epileptiform activity induced by 4-aminopyridine (4AP) or 4AP+Mg2+-free treatment in rat hippocampal slices. We used electrophysiological and photometric Ca2+ techniques to analyze the sI(AHP) modifications that parallel epileptiform activity. Epileptiform activity was characterized by slow, repetitive, spontaneous depolarizations and action potential bursts and was associated with increased frequency and amplitude of spontaneous excitatory postsynaptic currents and a reduced sI(AHP.) The metabotropic glutamate receptor (mGluR) antagonist (S)-alpha-methyl-4-carboxyphenylglycine did not modify synaptic activity enhancement but did prevent sI(AHP) inhibition and epileptiform discharges. The mGluR-dependent regulation of the sI(AHP) was not caused by modulated intracellular Ca2+ signaling. Histamine, isoproterenol, and (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid reduced the sI(AHP) but did not increase synaptic activity and failed to evoke epileptiform activity. We conclude that 4AP or 4AP+Mg-free-induced enhancement of synaptic activity reduced the sI(AHP) via activation of postsynaptic group I/II mGluRs. The increased excitability caused by the lack of negative feedback provided by the sI(AHP) contributes to epileptiform activity, which requires the cooperative action of increased synaptic activity.
منابع مشابه
Synaptic Regulation of the Slow Ca-Activated K Current in Hippocampal CA1 Pyramidal Neurons: Implication in Epileptogenesis
Martı́n, Eduardo D., Alfonso Araque, and Washington Buño. Synaptic regulation of the slow Ca-activated K current in hippocampal CA1 pyramidal neurons: implication in epileptogenesis. J Neurophysiol 86: 2878–2886, 2001. The slow Ca-activated K current (sIAHP) plays a critical role in regulating neuronal excitability, but its modulation during abnormal bursting activity, as in epilepsy, is unknown...
متن کاملAn apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons.
In hippocampal and other cortical neurons, action potentials are followed by afterhyperpolarizations (AHPs) generated by the activation of small-conductance Ca2+-activated K+ channels (SK channels). By shaping the neuronal firing pattern, these AHPs contribute to the regulation of excitability and to the encoding function of neurons. Here we report that CA1 pyramidal neurons express an AHP curr...
متن کاملEffect of repeated transcranial magnetic stimulation during epileptogenesis on spontaneous activity of hippocampal CA1 pyramidal neurons in rats
Introduction: Considering the antiepileptogenic effects of repeated transcranial magnetic stimulation (rTMS), the effect of rTMS applied during amygdala kindling on spontaneous activity of hippocampal CA1 pyramidal neurons was investigated. Materials and Methods: A tripolar electrode was inserted in basolateral amygdala of Male Wistar rats. After a recovery period, animals received daily kindl...
متن کاملElectrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats
Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...
متن کاملEstradiol regulates the slow Ca2+-activated K+ current in hippocampal pyramidal neurons.
The slow Ca2+-activated K+ current (sIAHP) was recorded in CA1 pyramidal neurons in hippocampal slices obtained from ovariectomized (OVX) or sham OVX (control) female rats. The sIAHP was significantly larger in cells from OVX rats than in cells from control rats. Superfusion with 5-100 nm 17beta-estradiol (E2) caused a progressive decrease in the sIAHP in cells from OVX rats but not in cells fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 86 6 شماره
صفحات -
تاریخ انتشار 2001