Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices

نویسندگان

  • Carl Fredrik Carlborg
  • Junichiro Shiomi
  • Shigeo Maruyama
چکیده

Abstract Thermal boundary resistance (TBR) between a single-walled carbon nanotube (SWNT) and matrices of solid and liquid argon was investigated by performing classical molecular dynamics simulations. Thermal boundary conductance (TBC), i.e. inverse of TBR, was quantified for a range of nanotube lengths by applying a pico-second heat pulse to the SWNT and observing the relaxation. The SWNT-length effect on the TBC was confirmed to be absent for SWNT lengths from 20 to 500 Å. The heat transfer mechanism was studied in detail and phonon spectrum analysis provided evidence that the resonant coupling between the low frequency modes of the SWNT and the argon matrix is present both in solid and liquid argon cases. The heat transfer mechanism was qualitatively analyzed by calculating the spectral temperature of the SWNT in different frequency regimes. It was found that the low frequency modes that are resonantly coupled to the argon matrix relaxes roughly ten times faster than the overall TBC time-scale, depending on the surrounding matrix. However, such resonant coupling was found to transfer little energy despite a popular picture of the linear transfer path. The analysis suggests that intra nanotube energy transfer from high frequency modes to low frequency ones is slower than the interfacial heat transfer to the argon matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulations of Heat Transfer of Carbon Nanotubes

Several heat transfer problems related to single-walled carbon nanotubes (SWNTs) are considered using molecular dynamics (MD) simulations. The Brenner potential [1] with the simplified form [2] is employed as the potential function between carbon and carbon within a nanotube. MD simulations of thermal conductivity along a nanotube, isotope effect in longitudinal thermal conductivity, and therma...

متن کامل

Heat Transfer Problems Related with Carbon Nanotubes

Several heat transfer problems related to single-walled carbon nanotubes (SWNTs) are considered using molecular dynamics (MD) simulations. The Brenner potential (Brenner, 1990) with the simplified form (Yamaguchi and Maruyama, 1998) is employed as the potential function between carbon and carbon within a nanotube. MD simulations of thermal conductivity along a nanotube, isotope effect in longit...

متن کامل

単層カーボンナノチューブの熱物性 Thermal Properties of Single - Walled Carbon Nanotubes ○

Single-walled carbon nanotubes (SWNTs) are expected to be the most exciting material in the nanotechnology. In addition to the outstanding electronic, optical and mechanical properties, thermal properties of SWNTs are quite unique with the high thermal conductivity along the tube axis. The molecular dynamics studies of thermal conductivity of a nanotube and thermal conductance between a nanotub...

متن کامل

Molecular Dynamics Simulations of Heat Transfer Issues in Carbon Nanotubes

Several heat transfer problems related to singlewalled carbon nanotubes (SWNTs) are considered through molecular dynamics (MD) simulations. MD simulations of thermal conductivity along a nanotube, isotope effect in longitudinal thermal conductivity, and thermal boundary resistance in a junction of nanotubes are reviewed. Then, the heat transfer from an SWNT to various surrounding materials is s...

متن کامل

Anisotropic Heat Transfer of Single-Walled Carbon Nanotubes

Heat transfer of single-walled carbon nanotubes (SWNTs) in practical situations is investigated using molecular dynamics (MD) simulations. Attenuation of the expected high thermal conductivity was simulated by mixing C isotope impurities to SWNTs or binding two SWNTs with different chirality with a junction structure in between. The heat transfer through the junction can be expressed with the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008