Invariant Gaussian Process Latent Variable Models and Application in Causal Discovery

نویسندگان

  • Kun Zhang
  • Bernhard Schölkopf
  • Dominik Janzing
چکیده

In nonlinear latent variable models or dynamic models, if we consider the latent variables as confounders (common causes), the noise dependencies imply further relations between the observed variables. Such models are then closely related to causal discovery in the presence of nonlinear confounders, which is a challenging problem. However, generally in such models the observation noise is assumed to be independent across data dimensions, and consequently the noise dependencies are ignored. In this paper we focus on the Gaussian process latent variable model (GPLVM), from which we develop an extended model called invariant GPLVM (IGPLVM), which can adapt to arbitrary noise covariances. With the Gaussian process prior put on a particular transformation of the latent nonlinear functions, instead of the original ones, the algorithm for IGPLVM involves almost the same computational loads as that for the original GPLVM. Besides its potential application in causal discovery, IGPLVM has the advantage that its estimated latent nonlinear manifold is invariant to any nonsingular linear transformation of the data. Experimental results on both synthetic and realworld data show its encouraging performance in nonlinear manifold learning and causal discovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

Causal Discovery for Linear Non-Gaussian Acyclic Models in the Presence of Latent Gaussian Confounders

LiNGAM has been successfully applied to casual inferences of some real world problems. Nevertheless, basic LiNGAM assumes that there is no latent confounder of the observed variables, which may not hold as the confounding effect is quite common in the real world. Causal discovery for LiNGAM in the presence of latent confounders is a more significant and challenging problem. In this paper, we pr...

متن کامل

A Logical Characterization of Constraint-Based Causal Discovery

We present a novel approach to constraintbased causal discovery, that takes the form of straightforward logical inference, applied to a list of simple, logical statements about causal relations that are derived directly from observed (in)dependencies. It is both sound and complete, in the sense that all invariant features of the corresponding partial ancestral graph (PAG) are identified, even i...

متن کامل

Estimation of linear non-Gaussian acyclic models for latent factors

Many methods have been proposed for discovery of causal relations among observed variables. But one often wants to discover causal relations among latent factors rather than observed variables. Some methods have been proposed to estimate linear acyclic models for latent factors that are measured by observed variables. However, most of the methods use data covariance structure alone for model id...

متن کامل

Gaussian Process Structural Equation Models with Latent Variables

In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been wellstudied, inference in nonparametri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010