Stimulation of calcineurin Aalpha activity attenuates muscle pathophysiology in mdx dystrophic mice.
نویسندگان
چکیده
Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their susceptibility to contraction damage. In mdx mice, the diaphragm is more severely affected than hindlimb muscles and more representative of Duchenne muscular dystrophy. The constitutively active calcineurin Aalpha transgene (CnAalpha) was overexpressed in skeletal muscles of mdx (mdx CnAalpha*) mice to test whether muscle morphology and function would be improved. Contractile function of diaphragm strips and extensor digitorum longus and soleus muscles from adult mdx CnAalpha* and mdx mice was examined in vitro. Hindlimb muscles from mdx CnAalpha* mice had a prolonged twitch time course and were more resistant to fatigue. Because of a slower phenotype and a decrease in fiber cross-sectional area, normalized force was lower in fast- and slow-twitch muscles of mdx CnAalpha* than mdx mice. In the diaphragm, despite a slower phenotype and a approximately 35% reduction in fiber size, normalized force was preserved. This was likely mediated by the reduction in the area of the diaphragm undergoing degeneration (i.e., mononuclear cell and connective and adipose tissue infiltration). The proportion of centrally nucleated fibers was reduced in mdx CnAalpha* compared with mdx mice, indicative of improved myofiber viability. In hindlimb muscles of mdx mice, calcineurin activation increased expression of markers of regeneration, particularly developmental myosin heavy chain isoform and myocyte enhancer factor 2A. Thus activation of the calcineurin signal transduction pathway has potential to ameliorate the mdx pathophysiology, especially in the diaphragm, through its effects on muscle degeneration and regeneration and endurance capacity.
منابع مشابه
Stimulation of calcineurin A activity attenuates muscle pathophysiology in mdx dystrophic mice
Stupka N, Schertzer JD, Bassel-Duby R, Olson EN, Lynch GS. Stimulation of calcineurin A activity attenuates muscle pathophysiology in mdx dystrophic mice. Am J Physiol Regul Integr Comp Physiol 294: R983–R992, 2008. First published January 16, 2008; doi:10.1152/ajpregu.00375.2007.—Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their sus...
متن کاملStimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice.
Utrophin has been studied extensively in recent years in an effort to find a cure for Duchenne muscular dystrophy. In this context, we previously showed that mice expressing enhanced muscle calcineurin activity (CnA*) displayed elevated levels of utrophin around their sarcolemma. In the present study, we therefore crossed CnA* mice with mdx mice to determine the suitability of elevating calcine...
متن کاملGlucocorticoid treatment alleviates dystrophic myofiber pathology by activation of the calcineurin/NF-AT pathway.
Duchenne muscular dystrophy (DMD) is a progressive and ultimately fatal skeletal muscle disease. Currently, the most effective therapy is the administration of a subclass of glucocorticoids, most notably deflazacort. Although deflazacort treatment can attenuate DMD progression, extend ambulation, and maintain muscle strength, the mechanism of its action remains unknown. Prior observations have ...
متن کاملToll-like receptor 4 ablation in mdx mice reveals innate immunity as a therapeutic target in Duchenne muscular dystrophy.
Toll-like receptor 4 (TLR4) recognizes specific structural motifs associated with microbial pathogens and also responds to certain endogenous host molecules associated with tissue damage. In Duchenne muscular dystrophy (DMD), inflammation plays an important role in determining the ultimate fate of dystrophic muscle fibers. In this study, we used TLR4-deficient dystrophic mdx mice to assess the ...
متن کاملSystemic administration of IGF-I enhances oxidative status and reduces contraction-induced injury in skeletal muscles of mdx dystrophic mice.
The absence of dystrophin and resultant disruption of the dystrophin glycoprotein complex renders skeletal muscles of dystrophic patients and dystrophic mdx mice susceptible to contraction-induced injury. Strategies to reduce contraction-induced injury are of critical importance, because this mode of damage contributes to the etiology of myofiber breakdown in the dystrophic pathology. Transgeni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 294 3 شماره
صفحات -
تاریخ انتشار 2008