Clustering and Detection of Hub in a Complex Networks via the Laplacian Matrix
نویسنده
چکیده
In clustering (also known as unsupervised learning and class discovery), the classes are unknown a priori and need to be identified from the unsupervised data. The cluster analysis is concerned about estimating the number of classes and assigning each observation to a certain class. In this article we discuss a method for clustering via the Laplacian matrix. Also, based on a similar argument, we suggest a method for detecting hubs in a complex networks.
منابع مشابه
Fault Detection and Isolation of Multi-Agent Systems via Complex Laplacian
This paper studies the problem of fault detection and isolation (FDI) for multi-agent systems (MAS) via complex Laplacian subject to actuator faults. A planar formation of point agents in the plane using simple and linear interaction rules related to complex Laplacian is achieved. The communication network is a directed, and yet connected graph with a fixed topology. The loss of symmetry in the...
متن کاملDetecting network communities: a new systematic and efficient algorithm
An efficient and relatively fast algorithm for the detection of communities in complex networks is introduced. The method exploits spectral properties of the graph Laplacian matrix combined with hierarchical clustering techniques, and includes a procedure for maximizing the ‘modularity’ of the output. Its performance is compared with that of other existing methods, as applied to different well-...
متن کاملInterpretation of gravity anomalies via terracing method of the profile curvature
One of the main goals of interpretation of gravity data is to detect location and edges of the anomalies. Edge detection of gravity anomalies is carried out by different methods. Terracing of the data is one of the approaches that help the interpreter to achieve appropriate results of edge detection. This goal becomes a complex task when the gravity anomalies have smooth borders due to gradual ...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملAn Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks
Wireless sensor networks (WSNs) consist of sensor nodes with limited energy. Energy efficiency is an important issue in WSNs as the sensor nodes are deployed in rugged and non-care areas and consume a lot of energy to send data to the central station or sink if they want to communicate directly with the sink. Recently, the IEEE 802.15.4 protocol is employed as a low-power, low-cost, and low rat...
متن کامل