Natural Organic Matter Transport Modeling with a Continuous Time Random Walk Approach.

نویسندگان

  • Daniel P McInnis
  • Diogo Bolster
  • Patricia A Maurice
چکیده

In transport experiments through columns packed with naturally Fe/Al oxide-coated quartz sand, breakthrough curves (BTCs) of natural organic matter (NOM) displayed strong and persistent power law tailing that could not be described by the classical advection-dispersion equation. Tailing was not observed in BTCs for a nonreactive tracer (sulforhodamine B); therefore, the anomalous transport is attributed to diverse adsorptive behavior of the polydisperse NOM sample rather than to physical heterogeneity of the porous medium. NOM BTC tailing became more pronounced with decreases in pH and increases in ionic strength, conditions previously shown to be associated with enhanced preferential adsorption of intermediate to high molecular weight NOM components. Drawing from previous work on anomalous solute transport, we develop an approach to model NOM transport within the framework of a continuous time random walk (CTRW) and show that under all conditions examined, the CTRW model is able to capture tailing of NOM BTCs by accounting for differences in transport rates of NOM fractions through a distribution of effective retardation factors. These results demonstrate the importance of considering effects of adsorptive fractionation on NOM mobility, and illustrate the ability of the CTRW model to describe transport of a multicomponent solute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Mittag-Leffler relaxation: clustering-jump continuous-time random walk approach.

A stochastic generalization of renormalization-group transformation for continuous-time random walk processes is proposed. The renormalization consists in replacing the jump events from a randomly sized cluster by a single renormalized (i.e., overall) jump. The clustering of the jumps, followed by the corresponding transformation of the interjump time intervals, yields a new class of coupled co...

متن کامل

Continuous-Time Quantum Walks and Trapping

Recent findings suggest that processes such as the electronic energy transfer through the photosynthetic antenna display quantal features, aspects known from the dynamics of charge carriers along polymer backbones. Hence, in modeling energy transfer one has to leave the classical, masterequation-type formalism and advance towards an increasingly quantum-mechanical picture, while still retaining...

متن کامل

Continuous-time random walks and traveling fronts.

We present a geometric approach to the problem of propagating fronts into an unstable state, valid for an arbitrary continuous-time random walk with a Fisher-Kolmogorov-Petrovski-Piskunov growth/reaction rate. We derive an integral Hamilton-Jacobi type equation for the action functional determining the position of reaction front and its speed. Our method does not rely on the explicit derivation...

متن کامل

Concentration statistics for transport in random media.

We study the ensemble statistics of the particle density in a random medium whose mean transport dynamics describes a continuous time random walk. Starting from a Langevin equation for the particle motion in a single disorder realization, we derive evolution equations for the n-point moments of concentration by coarse graining and ensemble averaging the microscale transport problem. The governi...

متن کامل

Geometrical aspects of quantum walks on random two-dimensional structures

We study the transport properties of continuous-time quantum walks (CTQWs) over finite two-dimensional structures with a given number of randomly placed bonds and with different aspect ratios (ARs). Here, we focus on the transport from, say, the left side to the right side of the structure where absorbing sites are placed. We do so by analyzing the long-time average of the survival probability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental engineering science

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2014