Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected].

نویسندگان

  • Elizabeth E Hur
  • Laszlo Zaborszky
چکیده

Glutamate transmission is critical for controlling cortical activity, but the specific contribution of the different isoforms of vesicular glutamate transporters in subcortical pathways to the neocortex is largely unknown. To determine the distribution and neocortical projections of vesicular glutamate transporter2 (Vglut2)-containing neurons, we used in situ hybridization and injections of the retrograde tracer Fluoro-Gold into the medial prefrontal and primary somatosensory cortices. The thalamus contains the majority of Vglut2 cells projecting to the neocortex (approximately 90% for the medial prefrontal cortex and 96% for the primary somatosensory cortex) followed by the hypothalamus and basal forebrain, the claustrum, and the brainstem. There are significantly more Vglut2 neurons projecting to the medial prefrontal cortex than to the primary somatosensory cortex. The medial prefrontal cortex also receives a higher percentage of Vglut2 projection from the hypothalamus than the primary somatosensory cortex. About 50% of thalamic Vglut2 projection to the medial prefrontal cortex and as much as 80% of the thalamic projection to primary somatosensory cortex originate in various relay thalamic nuclei. The remainder arise from different midline and intralaminar nuclei traditionally thought to provide nonspecific or diffuse projection to the cortex. The extrathalamic Vglut2 corticopetal projections, together with the thalamic intralaminar-midline Vglut2 corticopetal projections, may participate in diffuse activation of the neocortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesocorticolimbic glutamatergic pathway.

The mesocorticolimbic dopamine (DA) system plays important roles in reward, motivation, learning, memory, and movement. This system arises from the A10 region, comprising the ventral tegmental area and three adjacent midline nuclei (caudal linear nucleus, interfascicular nucleus, and rostral linear nucleus of the raphe). DAergic and GABAergic neurons are intermingled in this region with recentl...

متن کامل

THE JOURNAL OF COMPARATIVE NEUROLOGY 311~1-16 (1991) Organization of Visceral and Limbic Connections in the Insular Cortex of the Rat

The anterograde and retrograde transport of horseradish peroxidase was used to study the anatomical organization of visceral and limbic terminal fields in the insular cortex. Following injections into the ventroposterolateral parvicellular (VPLpc) and ventroposteromedial parvicellular (VF'Mpc) visceral relay nuclei of the thalamus, dense anterograde and retrograde labeling was present in the po...

متن کامل

Agriculture, Livestock and Fisheries

Glutamateric neuron Brain In situ hybridization Songbird The songbird brain has a system of interconnected nuclei that are specialized for singing and song learning. Electrophysiological findings indicate a role for the glutamatergic neurons in the song system. Vesicular glutamate transporter 2 (vGluT2) is considered to be a specific biomarker of glutamatergic neurons in birds. Neurons receivin...

متن کامل

Forebrain origins of glutamatergic innervation to the rat paraventricular nucleus of the hypothalamus: differential inputs to the anterior versus posterior subregions.

The hypothalamic paraventricular nucleus (PVN) regulates numerous homeostatic systems and functions largely under the influence of forebrain inputs. Glutamate is a major neurotransmitter in forebrain, and glutamate neurosignaling in the PVN is known to mediate many of its functions. Previous work showed that vesicular glutamate transporters (VGluTs; specific markers for glutamatergic neurons) a...

متن کامل

Segregated fronto‐cortical and midbrain connections in the mouse and their relation to approach and avoidance orienting behaviors

The orchestration of orienting behaviors requires the interaction of many cortical and subcortical areas, for example the superior colliculus (SC), as well as prefrontal areas responsible for top-down control. Orienting involves different behaviors, such as approach and avoidance. In the rat, these behaviors are at least partially mapped onto different SC subdomains, the lateral (SCl) and media...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 483 3  شماره 

صفحات  -

تاریخ انتشار 2005