Role of recombination in the evolution of the model plant pathogen Pseudomonas syringae pv. tomato DC3000, a very atypical tomato strain.
نویسندگان
چکیده
Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000) is one of the most intensively studied bacterial plant pathogens today. Here we report a thorough investigation into PtoDC3000 and close relatives isolated from Antirrhinum majus (snapdragon), Apium graveolens (celery), and Solanaceae and Brassicaceae species. Multilocus sequence typing (MLST) was used to resolve the precise phylogenetic relationship between isolates and to determine the importance of recombination in their evolution. MLST data were correlated with an analysis of the locus coding for the type III secreted (T3S) effector AvrPto1 to investigate the role of recombination in the evolution of effector repertoires. Host range tests were performed to determine if closely related isolates from different plants have different host ranges. It was found that PtoDC3000 is located in the same phylogenetic cluster as isolates from several Brassicaceae and Solanaceae species and that these isolates have a relatively wide host range that includes tomato, Arabidopsis thaliana, and cauliflower. All other analyzed tomato isolates from three different continents form a distinct cluster and are pathogenic only on tomato. Therefore, PtoDC3000 is a very unusual tomato isolate. Several recombination breakpoints were detected within sequenced gene fragments, and population genetic tests indicate that recombination contributed more than mutation to the variation between isolates. Moreover, recombination may play an important role in the reassortment of T3S effectors between strains. The data are finally discussed from a taxonomic standpoint, and P. syringae pv. tomato is proposed to be divided into two pathovars.
منابع مشابه
The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae.
Many plant pathogens suppress antimicrobial defenses using virulence factors that modulate endogenous host defenses. The Pseudomonas syringae phytotoxin coronatine (COR) is believed to promote virulence by acting as a jasmonate analog, because COR-insensitive 1 (coil) Arabidopsis thaliana and tomato mutants are impaired in jasmonate signaling and exhibit reduced susceptibility to P. syringae. T...
متن کاملA Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana.
The model pathogen Pseudomonas syringae pv. tomato DC3000 causes bacterial speck in tomato and Arabidopsis, but Nicotiana benthamiana, an important model plant, is considered to be a non-host. Strain DC3000 injects approximately 28 effector proteins into plant cells via the type III secretion system (T3SS). These proteins were individually delivered into N. benthamiana leaf cells via T3SS-profi...
متن کاملHopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions.
Pseudomonas syringae pv. tomato DC3000 causes bacterial speck disease in tomato, and it elicits the hypersensitive response (HR) in non-host plants such as Nicotiana tabacum and Nicotiana benthamiana. The compatible and incompatible interactions of DC3000 with tomato and Nicotiana spp., respectively, result in plant cell death, but the HR cell death occurs more rapidly and is associated with ef...
متن کاملResistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants
The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour....
متن کاملThe Pseudomonas syringae effector HopQ1 promotes bacterial virulence and interacts with tomato 14-3-3 proteins in a phosphorylation-dependent manner.
A key virulence strategy of bacterial pathogens is the delivery of multiple pathogen effector proteins into host cells during infection. The Hrp outer protein Q (HopQ1) effector from Pseudomonas syringae pv tomato (Pto) strain DC3000 is conserved across multiple bacterial plant pathogens. Here, we investigated the virulence function and host targets of HopQ1 in tomato (Solanum lycopersicum). Tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 10 شماره
صفحات -
تاریخ انتشار 2008