Stability of partial difference equations governing control gains in infinite-dimensional backstepping

نویسندگان

  • András Balogh
  • Miroslav Krstic
چکیده

We examine the stability properties of a class of LTV di"erence equations on an in&nite-dimensional state space that arise in backstepping designs for parabolic PDEs. The nominal system matrix of the di"erence equation has a special structure: all of its powers have entries that are −1, 0, or 1, and all of the eigenvalues of the matrix are on the unit circle. The di"erence equation is driven by initial conditions, additive forcing, and a system matrix perturbation, all of which depend on problem data (for example, viscosity and reactivity in the case of a reaction–di"usion equation), and all of which go to zero as the discretization step in the backstepping design goes to zero. All of these observations, combined with the fact that the equation evolves only in a number of steps equal to the dimension of its state space, combined with the discrete Gronwall inequality, establish that the di"erence equation has bounded solutions. This, in turn, guarantees the existence of a state-feedback gain kernel in the backstepping control law. With this approach we greatly expand, relative to our previous results, the class of parabolic PDEs to which backstepping is applicable. c © 2003 Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backstepping observers for a class of parabolic PDEs

In this paper we design exponentially convergent observers for a class of parabolic partial integro-differential equations (P(I)DEs) with only boundary sensing available. The problem is posed as a problem of designing an invertible coordinate transformation of the observer error system into an exponentially stable target system. Observer gain (output injection function) is shown to satisfy a we...

متن کامل

Optimal Boundary Control & Estimation of Diffusion-Reaction PDEs

This paper considers the optimal control and optimal estimation problems for a class of linear parabolic diffusion-reaction partial differential equations (PDEs) with actuators and sensors at the boundaries. Diffusion-reaction PDEs with boundary actuation and sensing arise in a multitude of relevant physical systems (e.g. magneto-hydrodynamic flows, chemical reactors, and electrochemical conver...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method

To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...

متن کامل

Integrator Backstepping Control of a 5 DoF Robot Manipulator with Cascaded Dynamics

In this paper, dynamic equations of motion of a 5 DoF robot manipulator including mechanical arms with revolute joints and their electrical actuators are considered. The application of integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and disturbance is studied. The advantage of this control technique is that it imposes the desired properties of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systems & Control Letters

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2004