Recognition Offline Handwritten Hindi Digits Using Multilayer Perceptron Neural Networks

نویسندگان

  • NIDAL F. SHILBAYEH
  • MUSBAH M. AQEL
چکیده

Handwritten Hindi digit recognition plays an important role in eastern Arab countries especially in the courtesy amounts of Arab bank checks. In this paper, we proposed an efficient offline handwritten Hindi digits recognition system and developed using Multilayer Perceptron Neural Network (MLP). The implemented system recognizes separated handwritten Hindi digits scanned using a scanner. The system has been designed, implemented and tested successfully. The error backpropagation algorithm has been used to train the MLP network. An analysis shows increasing in the recognition rate by doing some enhancements. The proposed system has been trained on samples of 1000 images and tested on samples of 600 images written by different users selected from different ages. The samples were scanned and preprocessed before entering the Neural Network for recognition. The An experimental result showed a very good recognition rate in comparison with other Hindi digit recognition systems that use the same recognition classifier tool especially if we consider the way of writing and number of training and testing samples. In addition, the recognition rate could be increased if we have a high resolution scanner and increase the number of training and testing samples. Key-Words: Offline Hindi Digit Recognition, Hindi Digits, Feature Extraction, MLP, Neural Networks, Backpropagation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of Handwritten Digits Using Multilayer Perceptrons

Neural networks are often used for pattern recognition. They prove to be a popular choice for OCR (Optical Character Recognition) systems, especially when dealing with the recognition of printed text. In this paper, multilayer perceptrons are used for the recognition of handwritten digits. The accuracy achieved proves that this application is a working prototype that can be further extended int...

متن کامل

Optical Character Recognition for Isolated Offline Handwritten Devanagari Numerals Using Wavelets

This paper presents a method of recognition of isolated offline handwritten Devanagari numerals using wavelets and neural network classifier. This method of optical character recognition takes the handwritten numeral image as input. After pre-processing, it is subjected to single level wavelet decomposition using Daubechies-4 wavelet filter. This wavelet decomposition allows viewing the input n...

متن کامل

Neural Network Based Offline Signature Recognition and Verification System

Handwritten signatures are the most natural way of authenticating a person’s identity. An offline signature verification system generally consists of four components: data acquisition, preprocessing, feature extraction, recognition and verification. This paper presents a method for verifying handwritten signature by using NN architecture. In proposed methods the multi-layer perceptron (MLP), mo...

متن کامل

Deep Big Multilayer Perceptrons for Digit Recognition

The competitive MNIST handwritten digit recognition benchmark has a long history of broken records since 1998. The most recent advancement by others dates back 8 years (error rate 0.4%). Good old on-line back-propagation for plain multi-layer perceptrons yields a very low 0.35% error rate on the MNIST handwritten digits benchmark with a single MLP and 0.31% with a committee of seven MLP. All we...

متن کامل

Intelligent Handwritten Digit Recognition using Artificial Neural Network

The aim of this paper is to implement a Multilayer Perceptron (MLP) Neural Network to recognize and predict handwritten digits from 0 to 9. A dataset of 5000 samples were obtained from MNIST. The dataset was trained using gradient descent back-propagation algorithm and further tested using the feed-forward algorithm. The system performance is observed by varying the number of hidden units and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013