Texture Analysis of Supraspinatus Ultrasound Image for Computer Aided Diagnostic System
نویسندگان
چکیده
OBJECTIVES In this paper, we proposed an algorithm for recognizing a rotator cuff supraspinatus tendon tear using a texture analysis based on a histogram, gray level co-occurrence matrix (GLCM), and gray level run length matrix (GLRLM). METHODS First, we applied a total of 57 features (5 first order descriptors, 40 GLCM features, and 12 GLRLM features) to each rotator cuff region of interest. Our results show that first order statistics (mean, skewness, entropy, energy, smoothness), GLCM (correlation, contrast, energy, entropy, difference entropy, homogeneity, maximum probability, sum average, sum entropy), and GLRLM features are helpful to distinguish a normal supraspinatus tendon and an abnormal supraspinatus tendon. The statistical significance of these features is verified using a t-test. The support vector machine classification showed accuracy using feature combinations. Support Vector Machine offers good performance with a small amount of training data. Sensitivity, specificity, and accuracy are used to evaluate performance of a classification test. RESULTS From the results, first order statics features and GLCM and GLRLM features afford 95%, 85%, and 100% accuracy, respectively. First order statistics and GLCM and GLRLM features in combination provided 100% accuracy. Combinations that include GLRLM features had high accuracy. GLRLM features were confirmed as highly accurate features for classified normal and abnormal. CONCLUSIONS This algorithm will be helpful to diagnose supraspinatus tendon tear on ultrasound images.
منابع مشابه
Computerize classification of Benign and malignant thyroid nodules by ultrasound imaging
Introduction: Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Ultrasound is the chosen imaging technique for assessment of thyroid nodules. Confirmation of the diagnosis usually demands repeated fine needle aspiration biopsy (FNAB). So, current management, has morbidity and non zero mortality. The goal of the present study ...
متن کاملClassification of breast ultrasound images using fractal feature.
Fractal analyses have been applied successfully for the image compression, texture analysis, and texture image segmentation. The fractal dimension could be used to quantify the texture information. In this study, the differences of gray value of neighboring pixels are used to estimate the fractal dimension of an ultrasound image of breast lesion by using the fractal Brownian motion. Furthermore...
متن کاملA Fusion-Based Approach for Breast Ultrasound Image Classification Using Multiple-ROI Texture and Morphological Analyses
Ultrasound imaging is commonly used for breast cancer diagnosis, but accurate interpretation of breast ultrasound (BUS) images is often challenging and operator-dependent. Computer-aided diagnosis (CAD) systems can be employed to provide the radiologists with a second opinion to improve the diagnosis accuracy. In this study, a new CAD system is developed to enable accurate BUS image classificat...
متن کاملImprovement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis.
Recent statistics show that breast cancer is a major cause of death among women in developed countries. Hence, finding an accurate and effective diagnostic method is very important. In this paper, we propose a high precision computer-aided diagnosis (CAD) system for sonography. We utilize a support vector machine (SVM) to classify breast tumors according to their texture information surrounding...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کامل