Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems.

نویسندگان

  • Dan Sun
  • Aijie Wang
  • Shaoan Cheng
  • Matthew Yates
  • Bruce E Logan
چکیده

A previously isolated exoelectrogenic bacterium, strain SD-1(T), was further characterized and identified as a representative of a novel species of the genus Geobacter. Strain SD-1(T) was Gram-negative, aerotolerant, anaerobic, non-spore-forming, non-fermentative and non-motile. Cells were short, curved rods (0.8-1.3 µm long and 0.3 µm in diameter). Growth of strain SD-1(T) was observed at 15-42 °C and pH 6.0-8.5, with optimal growth at 30-35 °C and pH 7. Analysis of 16S rRNA gene sequences indicated that the isolate was a member of the genus Geobacter, with the closest known relative being Geobacter sulfurreducens PCA(T) (98% similarity). Similar to other members of the genus Geobacter, strain SD-1(T) used soluble or insoluble Fe(III) as the sole electron acceptor coupled with the oxidation of acetate. However, SD-1(T) could not reduce fumarate as an electron acceptor with acetate oxidization, which is an important physiological trait for G. sulfurreducens. Moreover, SD-1(T) could grow in media containing as much as 3% NaCl, while G. sulfurreducens PCA(T) can tolerate just half this concentration, and this difference in salt tolerance was even more obvious when cultivated in bioelectrochemical systems. DNA-DNA hybridization analysis of strain SD-1(T) and its closest relative, G. sulfurreducens ATCC 51573(T), showed a relatedness of 61.6%. The DNA G+C content of strain SD-1(T) was 58.9 mol%. Thus, on the basis of these characteristics, strain SD-1(T) was not assigned to G. sulfurreducens, and was instead classified in the genus Geobacter as a representative of a novel species. The name Geobacter anodireducens sp. nov. is proposed, with the type strain SD-1(T) ( = CGMCC 1.12536(T) = KCTC 4672(T)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Genome Sequence of Geobacter anodireducens SD-1T, a Salt-Tolerant Exoelectrogenic Microbe in Bioelectrochemical Systems

Strain SD-1 is the type strain of the species Geobacter anodireducens, which was originally isolated from a microbial fuel cell reactor in the United States. The characteristic of this bacterium is its high electrochemical activity. Here, we report the fully assembled genome and plasmid sequence of G. anodireducens SD-1(T).

متن کامل

Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria

Graphene oxide (GO) is reduced by certain exoelectrogenic bacteria, but its effects on bacterial growth and metabolism are a controversial issue. This study aimed to determine whether GO functions as the terminal electron acceptor to allow specific growth of and electricity production by exoelectrogenic bacteria. Cultivation of environmental samples with GO and acetate as the sole substrate cou...

متن کامل

The electric picnic: synergistic requirements for exoelectrogenic microbial communities.

Characterization of the various microbial populations present in exoelectrogenic biofilms provides insight into the processes required to convert complex organic matter in wastewater streams into electrical current in bioelectrochemical systems (BESs). Analysis of the community profiles of exoelectrogenic microbial consortia in BESs fed different substrates gives a clearer picture of the differ...

متن کامل

Extracellular electron transfer from cathode to microbes: application for biofuel production

Extracellular electron transfer in microorganisms has been applied for bioelectrochemical synthesis utilizing microbes to catalyze anodic and/or cathodic biochemical reactions. Anodic reactions (electron transfer from microbe to anode) are used for current production and cathodic reactions (electron transfer from cathode to microbe) have recently been applied for current consumption for valuabl...

متن کامل

A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells.

There is great interest in studying exoelectrogenic microorganisms, but existing methods can require expensive electrochemical equipment and specialized reactors. We developed a simple system for conducting high throughput bioelectrochemical research using multiple inexpensive microbial electrolysis cells (MECs) built with commercially available materials and operated using a single power sourc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of systematic and evolutionary microbiology

دوره 64 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2014