IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function.

نویسندگان

  • Jordan S Orange
  • Sumita Roy-Ghanta
  • Emily M Mace
  • Saumya Maru
  • Gregory D Rak
  • Keri B Sanborn
  • Anders Fasth
  • Rushani Saltzman
  • Allison Paisley
  • Linda Monaco-Shawver
  • Pinaki P Banerjee
  • Rahul Pandey
چکیده

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement.

Reorganization of cortical actin filaments plays critical roles in cell movement and pattern formation. Recently, the WASP and WAVE family proteins WASP and N-WASP, and WAVE1, WAVE2 and WAVE3 have been shown to regulate cortical actin filament reorganization in response to extracellular stimuli. These proteins each have a verprolin-homology (V) domain, cofilin-homology (C) domain and an acidic ...

متن کامل

A WAVE2-Abi1 complex mediates CSF-1-induced F-actin-rich membrane protrusions and migration in macrophages.

Colony-stimulating factor 1 (CSF-1) is an important physiological chemoattractant for macrophages. The mechanisms by which CSF-1 elicits the formation of filamentous actin (F-actin)-rich membrane protrusions and induces macrophage migration are not fully understood. In particular, very little is known regarding the contribution of the different members of the Wiskott-Aldrich Syndrome protein (W...

متن کامل

Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion.

During cadherin-dependent cell-cell adhesion, the actin cytoskeleton undergoes dynamic reorganization in epithelial cells. Rho-family small GTPases, which regulate actin dynamics, play pivotal roles in cadherin-dependent cell-cell adhesion; however, the precise molecular mechanisms that underlie cell-cell adhesion formation remain unclear. Here we show that Wiskott-Aldrich syndrome protein fami...

متن کامل

Enhancement of branching efficiency by the actin filament-binding activity of N-WASP/WAVE2.

The actin-related protein (Arp) 2/3 complex is an essential regulator of de novo actin filament formation. Arp2/3 nucleates the polymerization of actin and creates branched actin filaments when activated by Arp2/3-complex activating domain (VCA) of Wiskott-Aldrich syndrome proteins (WASP family proteins). We found that the branching of actin filaments on pre-existing ADP filaments mediated by t...

متن کامل

Impaired natural and CD16-mediated NK cell cytotoxicity in patients with WAS and XLT: ability of IL-2 to correct NK cell functional defect.

In this study we show that Wiskott-Aldrich syndrome protein (WASp), a critical regulator of actin cytoskeleton that belongs to the Scar/WAVE family, plays a crucial role in the control of natural killer (NK) cell cytotoxicity. Analysis of NK cell numbers and cytotoxic activity in patients carrying different mutations in the WASP coding gene indicated that although the percentage of NK cells was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 121 4  شماره 

صفحات  -

تاریخ انتشار 2011