Runx2/Smad3 complex negatively regulates TGF-β-induced connective tissue growth factor gene expression in vascular smooth muscle cells.

نویسندگان

  • Yoshiaki Ohyama
  • Toru Tanaka
  • Takehisa Shimizu
  • Hiroki Matsui
  • Hiroko Sato
  • Norimichi Koitabashi
  • Hiroshi Doi
  • Tatsuya Iso
  • Masashi Arai
  • Masahiko Kurabayashi
چکیده

AIM Connective tissue growth factor (CTGF), a direct target gene of transforming growth factor-β (TGF-β) signaling, plays an important role in the development of atherosclerosis. We previously showed that Runx2, a key transcription factor in osteoblast differentiation, regulates osteogenic conversion and dedifferentiation of vascular smooth muscle cells (VSMCs). In this study, we investigated the hypothesis that Runx2 modulates CTGF gene expression via the regulation of TGF-β signaling. METHODS AND RESULTS Expression of the Runx2 gene was decreased, and CTGF mRNA levels were reciprocally increased by TGF-β in a time-dependent manner in cultured human aortic smooth muscle cells (HASMCs) and C3H10T1/2 cells. Forced expression of Runx2 decreased and the reduction of Runx2 expression by small interfering RNA enhanced both basal and TGF-β-stimulated CTGF gene expression in HASMCs. Site-directed mutation analysis of the CTGF promoter indicated that transcriptional repression by Runx2 was mediated by the Smad-binding element (SBE) under basal and TGF-β-stimulated conditions. Data obtained from immunoblots of Runx2-, Smad3- or Smad4-transfected cells and chromatin immunoprecipitation analysis indicated that Runx2 interacts with Smad3 at the SBE. Immunohistochemistry revealed that the expression of Runx2 and CTGF was distinct and almost mutually exclusive in human atherosclerotic plaque. CONCLUSIONS These results for the first time demonstrate that Runx2/Smad3 complex negatively regulates endogenous and TGF-β-induced CTGF gene expression in VSMCs. Thus, the induction of Runx2 expression contributes to the phenotypic modulation of VSMCs, in which the TGF-β/Smad pathway plays a major role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells

Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...

متن کامل

Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling

Aneurysm-osteoarthritis syndrome characterized by unpredictable aortic aneurysm formation, is caused by SMAD3 mutations. SMAD3 is part of the SMAD2/3/4 transcription factor, essential for TGF-β-activated transcription. Although TGF-β-related gene mutations result in aneurysms, the underlying mechanism is unknown. Here, we examined aneurysm formation and progression in Smad3-/- animals. Smad3-/-...

متن کامل

Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction.

RATIONALE Cardiac fibroblasts are key effector cells in the pathogenesis of cardiac fibrosis. Transforming growth factor (TGF)-beta/Smad3 signaling is activated in the border zone of healing infarcts and induces fibrotic remodeling of the infarcted ventricle contributing to the development of diastolic dysfunction. OBJECTIVE The present study explores the mechanisms responsible for the fibrog...

متن کامل

Poly(ADP-ribose) Polymerase 1 Is Indispensable for Transforming Growth Factor-β Induced Smad3 Activation in Vascular Smooth Muscle Cell

BACKGROUND Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influen...

متن کامل

Endogenous Sulfur Dioxide Inhibits Vascular Calcification in Association with the TGF-β/Smad Signaling Pathway

The study was designed to investigate whether endogenous sulfur dioxide (SO₂) plays a role in vascular calcification (VC) in rats and its possible mechanisms. In vivo medial vascular calcification was induced in rats by vitamin D3 and nicotine for four weeks. In vitro calcification of cultured A7r5 vascular smooth muscle cells (VSMCs) was induced by calcifying media containing 5 mmol/L CaCl₂. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of atherosclerosis and thrombosis

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2012