Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery.
نویسندگان
چکیده
Graphene oxide (GO) has been extensively explored in nanomedicine for its excellent physiochemical, electrical, and optical properties. Here, polyethylene glycol (PEG) and polyethylenimine (PEI) are covalently conjugated to GO via amide bonds, obtaining a physiologically stable dual-polymer-functionalized nano-GO conjugate (NGO-PEG-PEI) with ultra-small size. Compared with free PEI and the GO-PEI conjugate without PEGylation, NGO-PEG-PEI shows superior gene transfection efficiency without serum interference, as well as reduced cytotoxicity. Utilizing the NIR optical absorbance of NGO, the cellular uptake of NGO-PEG-PEI is shown to be enhanced under a low power NIR laser irradiation, owing to the mild photothermal heating that increases the cell membrane permeability without significantly damaging cells. As the results, remarkably enhanced plasmid DNA transfection efficiencies induced by the NIR laser are achieved using NGO-PEG-PEI as the light-responsive gene carrier. More importantly, it is shown that our NGO-PEG-PEI is able to deliver small interfering RNA (siRNA) into cells under the control of NIR light, resulting in obvious down-regulation of the target gene, Polo-like kinase 1 (Plk1), in the presence of laser irradiation. This study is the first to use photothermally enhanced intracellular trafficking of nanocarriers for light-controllable gene delivery. This work also encourages further explorations of functionalized nano-GO as a photocontrollable nanovector for combined photothermal and gene therapies.
منابع مشابه
Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity.
Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG)...
متن کاملEnhanced electrical conductivity properties of Graphene Oxide nanocomposites functionalized with Polyvinyl Alcohol
We report the synthesized and preparation of graphene oxide (GO) nanocomposite functionalized with polyvinyl alcohol (PVA) with different concentration of graphene oxide 0, 1, 1.5, 2, 2.5, 3, 3.5 and 4% weight. This synthesized confirmed by FT-IR. The electrical conductivity of the all nanocomposite was measured at 25°C for all samples and the resulted showed electrical conductivity ...
متن کاملEnhanced electrical conductivity properties of Graphene Oxide nanocomposites functionalized with Polyvinyl Alcohol
We report the synthesized and preparation of graphene oxide (GO) nanocomposite functionalized with polyvinyl alcohol (PVA) with different concentration of graphene oxide 0, 1, 1.5, 2, 2.5, 3, 3.5 and 4% weight. This synthesized confirmed by FT-IR. The electrical conductivity of the all nanocomposite was measured at 25°C for all samples and the resulted showed electrical conductivity ...
متن کاملAn antibody-graphene oxide nanoribbon conjugate as a surface enhanced laser desorption/ionization probe with high sensitivity and selectivity.
Graphene oxide nanoribbons (GONRs) were covalently functionalized with an antibody using polyethylene glycol (PEG) as a linker to produce a novel probe for surface enhanced laser desorption/ionization mass spectrometry (SELDI MS). This probe provides a highly sensitive and selective platform for enrichment and MS detection of small molecules in complex media.
متن کاملPEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets
This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol-1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 9 11 شماره
صفحات -
تاریخ انتشار 2013