A probabilistic model of classifier competence for dynamic ensemble selection
نویسندگان
چکیده
The concept of a classifier competence is fundamental to multiple classifier systems (MCSs). In this study, a method for calculating the classifier competence is developed using a probabilistic model. In the method, first a randomised reference classifier (RRC) whose class supports are realisations of the random variables with beta probability distributions is constructed. The parameters of the distributions are chosen in such a way that, for each feature vector in a validation set, the expected values of the class supports produced by the RRC and the class supports produced by a modelled classifier are equal. This allows for using the probability of correct classification of the RRC as the competence of the modelled classifier. The competences calculated for a validation set are then generalised to an entire feature space by constructing a competence function based on a potential function model or regression. Three systems based on a dynamic classifier selection and a dynamic ensemble selection (DES) were constructed using the method developed. The DES based system had statistically significant higher average rank than the ones of eight benchmark MCSs for 22 data sets and a heterogeneous ensemble. The results obtained indicate that the full vector of class supports should be used for evaluating the classifier competence as this potentially improves performance of MCSs. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
On New Methods of Dynamic Ensemble Selection Based on Randomized Reference Classifier
In the paper two dynamic ensemble selection (DES) systems are proposed. Both systems are based on a probabilistic model and utilize the concept of Randomized Reference Classifier (RRC) to determine the competence function of base classifiers. In the first system in the selection procedure of base classifiers the dynamic threshold of competence is applied. In the second DES system, selected clas...
متن کاملOptimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
In this paper, a new probabilistic model using measures of classifier competence and diversity is proposed. The multiple classifier system (MCS) based on the dynamic ensemble selection scheme was constructed using both developed measures. Two different optimization problems of ensemble selection are defined and a solution based on the simulated annealing algorithm is presented. The influence of...
متن کاملA DEEP analysis of the META-DES framework for dynamic selection of ensemble of classifiers
Dynamic ensemble selection (DES) techniques work by estimating the level of competence of each classifier from a pool of classifiers. Only the most competent ones are selected to classify a given test sample. Hence, the key issue in DES is the criterion used to estimate the level of competence of the classifiers to predict the label of a given test sample. In order to perform a more robust ense...
متن کاملMETA-DES.Oracle: Meta-learning and feature selection for dynamic ensemble selection
Dynamic ensemble selection (DES) techniques work by estimating the competence level of each classifier from a pool of classifiers, and selecting only the most competent ones for the classification of a specific test sample. The key issue in DES is defining a suitable criterion for calculating the classifiers’ competence. There are several criteria available to measure the level of competence of...
متن کاملMulticlassifier System with Competence and Diversity Measures Applied to the Recognition of Multimodal Biosignals in the Control of Bioprosthetic Hand
The paper presents an advanced method of recognition of patient’s intention to move of multijoint hand prosthesis during the grasping and manipulation of objects in a dexterous manner. The proposed method is based on twolevel multiclassifier system (MCS) with heterogeneous base classifiers dedicated to EMG and MMG biosignals and with combining mechanism using a dynamic ensemble selection scheme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 44 شماره
صفحات -
تاریخ انتشار 2011