Regulation of estrogen receptor α by histone methyltransferase SMYD2-mediated protein methylation.
نویسندگان
چکیده
Estrogen receptor alpha (ERα) is a ligand-activated transcription factor. Upon estrogen stimulation, ERα recruits a number of coregulators, including both coactivators and corepressors, to the estrogen response elements, modulating gene activation or repression. Most coregulator complexes contain histone-modifying enzymes to control ERα target gene expression in an epigenetic manner. In addition to histones, these epigenetic modifiers can modify nonhistone proteins including ERα, thereby constituting another layer of transcriptional regulation. Here we show that SET and MYND domain containing 2 (SMYD2), a histone H3K4 and H3K36 methyltransferase, directly methylates ERα protein at lysine 266 (K266) both in vitro and in cells. In breast cancer MCF7 cells, SMYD2 attenuates the chromatin recruitment of ERα to prevent ERα target gene activation under an estrogen-depleted condition. Importantly, the SMYD2-mediated repression of ERα target gene expression is mediated by the methylation of ERα at K266 in the nucleus, but not the methylation of histone H3K4. Upon estrogen stimulation, ERα-K266 methylation is diminished, thereby enabling p300/cAMP response element-binding protein-binding protein to acetylate ERα at K266, which is known to promote ERα transactivation activity. Our study identifies a previously undescribed inhibitory methylation event on ERα. Our data suggest that the dynamic cross-talk between SMYD2-mediated ERα protein methylation and p300/cAMP response element-binding protein-binding protein-dependent ERα acetylation plays an important role in fine-tuning the functions of ERα at chromatin and the estrogen-induced gene expression profiles.
منابع مشابه
The Tale of Two Domains PROTEOMICS AND GENOMICS ANALYSIS OF SMYD2, A NEW HISTONE METHYLTRANSFERASE*□S
Very little is known about SETand MYND-containing protein 2 (SMYD2), a member of the SMYD protein family. However, the interest in better understanding the roles of SMYD2 has grown because of recent reports indicating that SMYD2 methylates p53 and histone H3. In this study, we present a combined proteomics and genomics study of SMYD2 designed to elucidate its molecular roles. We report the cyto...
متن کاملThe tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase.
Very little is known about SET- and MYND-containing protein 2 (SMYD2), a member of the SMYD protein family. However, the interest in better understanding the roles of SMYD2 has grown because of recent reports indicating that SMYD2 methylates p53 and histone H3. In this study, we present a combined proteomics and genomics study of SMYD2 designed to elucidate its molecular roles. We report the cy...
متن کاملDysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN.
Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN...
متن کاملPhosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1.
Multiple protein arginine methyltransferases are involved in transcriptional activation of nuclear receptors. Coactivator-associated arginine methyltransferase 1 (CARM1)-mediated histone methylation has been shown to activate nuclear receptor-dependent transcription; however, little is known about the regulation of its enzymatic activity. Here, we report that the methyltransferase activity of C...
متن کاملProteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2.
The SMYD (SET and MYND domain) family of lysine methyltransferases (KMTs) plays pivotal roles in various cellular processes, including gene expression regulation and DNA damage response. Initially identified as genuine histone methyltransferases, specific members of this family have recently been shown to methylate non-histone proteins such as p53, VEGFR, and the retinoblastoma tumor suppressor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 43 شماره
صفحات -
تاریخ انتشار 2013