Electrophysiological evidence for independent speed channels in human motion processing.
نویسندگان
چکیده
A variety of psychophysical studies suggests that motion perception in humans is mediated by at least two speed-tuned channels. To study the neurophysiological underpinnings of these channels in the human visual cortex, we recorded visual evoked potentials (VEPs) to motion onset. We applied an adaptation paradigm that allowed us (a) to isolate and extract direction-specific cortical responses and (b) to assess cross-adaptation in the speed domain. VEPs resulting from the onset of left- or rightward motion at either low or high speeds were recorded from three occipital recording sites in 11 subjects. For each of these test stimuli, responses were collected after adaptation to one of five different conditions: a static adaptation pattern (baseline), adaptation to low-speed motion (3.5 degrees/s) either in the same or in the opposite direction as the test, or adaptation to high-speed motion (32 degrees/s) either in the same or in the opposite direction as the test. We report considerable direction-specific adaptation for same adaptation and test speeds (by 28-37% of baseline response; p <.002), whereas there was no direction-specific adaptation across speeds. We supplement these electrophysiological data with corresponding psychophysical results. The lack of direction-specific cross-adaptation in the speed domain demonstrated with physiological and psychophysical techniques supports models of at least two speed-tuned channels in the human motion system.
منابع مشابه
Disentangling neural structures for processing of high- and low-speed visual motion.
Human psychophysical and electrophysiological evidence suggests at least two separate visual motion pathways, one tuned to a lower and one tuned to a broader and partly overlapping range of higher speeds. It remains unclear whether these two different channels are represented by different cortical areas or by sub-populations within a single area. We recorded evoked potentials at 59 scalp locati...
متن کاملComputational modelling of interleaved first- and second-order motion sequences and translating 3f+4f beat patterns
Despite detailed psychophysical, neurophysiological and electrophysiological investigation, the number and nature of independent and parallel motion processing mechanisms in the visual cortex remains controversial. Here we use computational modelling to evaluate evidence from two psychophysical studies collectively thought to demonstrate the existence of three separate and independent motion pr...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملParallel processing in human audition and post-lesion plasticity
Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2004