Single-channel noise reduction using unified joint diagonalization and optimal filtering
نویسندگان
چکیده
In this paper, the important problem of single-channel noise reduction is treated from a new perspective. The problem is posed as a filtering problem based on joint diagonalization of the covariance matrices of the desired and noise signals. More specifically, the eigenvectors from the joint diagonalization corresponding to the least significant eigenvalues are used to form a filter, which effectively estimates the noise when applied to the observed signal. This estimate is then subtracted from the observed signal to form an estimate of the desired signal, i.e., the speech signal. In doing this, we consider two cases, where, respectively, no distortion and distortion are incurred on the desired signal. The former can be achieved when the covariance matrix of the desired signal is rank deficient, which is the case, for example, for voiced speech. In the latter case, the covariance matrix of the desired signal is full rank, as is the case, for example, in unvoiced speech. Here, the amount of distortion incurred is controlled via a simple, integer parameter, and the more distortion allowed, the higher the output signal-to-noise ratio (SNR). Simulations demonstrate the properties of the two solutions. In the distortionless case, the proposed filter achieves only a slightly worse output SNR, compared to the Wiener filter, along with no signal distortion. Moreover, when distortion is allowed, it is possible to achieve higher output SNRs compared to the Wiener filter. Alternatively, when a lower output SNR is accepted, a filter with less signal distortion than the Wiener filter can be constructed.
منابع مشابه
Single-channel noise reduction using optimal rectangular filtering matrices.
This paper studies the problem of single-channel noise reduction in the time domain and presents a block-based approach where a vector of the desired speech signal is recovered by filtering a frame of the noisy signal with a rectangular filtering matrix. With this formulation, the noise reduction problem becomes one of estimating an optimal filtering matrix. To achieve such estimation, a method...
متن کاملSingle-channel noise reduction via semi-orthogonal transformations and reduced-rank filtering
This paper investigates the problem of single-channel noise reduction in the time domain. The objective is to find a lower dimensional filter that can yield a noise reduction performance as close as possible to or even better than that obtained by the full-rank solution. This is achieved in three steps. First, we transform the observation signal vector sequence, through a semi-orthogonal matrix...
متن کاملAn Asymptotic Analysis of the MIMO BC under Linear Filtering
We investigate the MIMO broadcast channel in the high SNR regime when linear filtering is applied instead of dirty paper coding. Using a user-wise rate duality where the streams of every single user are not treated as self-interference as in the hitherto existing stream-wise rate dualities for linear filtering, we solve the weighted sum rate maximization problem of the broadcast channel in the ...
متن کاملNoise reduction using hybrid noise estimation technique and post-filtering
In this paper, a novel noise reduction method using hybrid noise estimation technique and post-filtering is proposed to suppress both localized and non-localized noise components which can not be dealt with by the traditional methods [2][3][4]. To do this, a hybrid noise estimation approach is proposed by combining our previously constructed multichannel noise estimation approach and a single-c...
متن کاملCircular Mean Filtering For Textures Noise Reduction
In this paper, a special preprocessing operations (filter) is proposed to decrease the effects of noise of textures. This filter using average of circular neighbor points (Cmean) to reduce noise effect. Comparing this filter with other average filters such as square mean filter and square median filter indicates that it provides more noise reduction and increases the classification accuracy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014