Chromatin profiling across the human tumour necrosis factor gene locus reveals a complex, cell type-specific landscape with novel regulatory elements
نویسندگان
چکیده
The TNF locus on chromosome 6p21 encodes a family of proteins with key roles in the immune response whose dysregulation leads to severe disease. Transcriptional regulation is important, with cell type and stimulus-specific enhancer complexes involving the proximal TNF promoter. We show how quantitative chromatin profiling across a 34 kb region spanning the TNF locus has allowed us to identify a number of novel DNase hypersensitive sites and characterize more distant regulatory elements. We demonstrate DNase hypersensitive sites corresponding to the lymphotoxin alpha (LTA) and tumour necrosis factor (TNF) promoter regions, a CpG island in exon 4 of lymphotoxin beta (LTB), the 3' end of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1 (NFKBIL1) and 3.4 kb upstream of LTA. These sites co-localize to highly conserved DNA sequences and show evidence of cell type specificity when lymphoblastoid, Jurkat, U937, HeLa and HEK293T cell lines are analysed using Southern blotting. For Jurkat T cells, we define histone modifications across the locus. Peaks of acetylated histone H3 and H4, together with tri-methyl K4 of histone H3, correspond to hypersensitive sites, notably in exon 4 of LTB. We provide evidence of a functional role for an intergenic DNase I hypersensitive site distal to LTA in Jurkat cells based on reporter gene analysis, with evidence of recruitment of upstream stimulatory factors (USF) transcription factors.
منابع مشابه
P-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes
Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...
متن کاملProfiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules.
The transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis-regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the assay for transposase-accessible chromatin (ATAC-seq) in four plant species (Arabidopsis thaliana, Medicago truncatula...
متن کاملGenome-wide analysis of the relationships between DNaseI HS, histone modifications and gene expression reveals distinct modes of chromatin domains
To understand the molecular mechanisms that underlie global transcriptional regulation, it is essential to first identify all the transcriptional regulatory elements in the human genome. The advent of next-generation sequencing has provided a powerful platform for genome-wide analysis of different species and specific cell types; when combined with traditional techniques to identify regions of ...
متن کاملLeukaemia cell of origin identified by chromatin landscape of bulk tumour cells
The precise identity of a tumour's cell of origin can influence disease prognosis and outcome. Methods to reliably define tumour cell of origin from primary, bulk tumour cell samples has been a challenge. Here we use a well-defined model of MLL-rearranged acute myeloid leukaemia (AML) to demonstrate that transforming haematopoietic stem cells (HSCs) and multipotent progenitors results in more a...
متن کاملThe Majority of Primate-Specific Regulatory Sequences Are Derived from Transposable Elements
Although emerging evidence suggests that transposable elements (TEs) have contributed novel regulatory elements to the human genome, their global impact on transcriptional networks remains largely uncharacterized. Here we show that TEs have contributed to the human genome nearly half of its active elements. Using DNase I hypersensitivity data sets from ENCODE in normal, embryonic, and cancer ce...
متن کامل