An alternative proof of SAT NP-completeness (Preliminary version)

نویسندگان

  • Bruno Escoffier
  • Vangelis Th. Paschos
چکیده

Nous donnons une preuve de la NP-complétude de SAT en se basant sur une caractérisation logique de la classe NP donnée par Fagin en 1974. Ensuite, nous illustrons une partie de la preuve en montrant comment deux problèmes bien connus, le problème de MAX STABLE et de 3-COLORATION peuvent s’exprimer sous forme conjonctive normale. Enfin, dans le même esprit, nous redémontrons la min NPOcomplétude du problème de MIN WSAT sous la stricte-réduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Alternative proof of SAT NP-Completeness

We give a proof of SAT’s NP-completeness based upon a syntaxic characterization of NP given by Fagin at 1974. Then, we illustrate a part of our proof by giving examples of how two well-known problems, MAX INDEPENDENT SET and 3COLORING, can be expressed in terms of CNF. Finally, in the same spirit we demonstrate the min NPO-completeness of MIN WSAT under strict reductions.

متن کامل

An integer programming proof of Cook’s theorem of NP-completeness

The theory of NP-completeness has its roots in a foundational result by Cook, who showed that Boolean satisfiability (SAT) is NP-complete and thus unlikely to admit an efficient solution. We prove an analogous result using binary integer programming in the place of SAT. The proof gives deeper insight into the theory of NP-completeness to operations researchers for whom the language of integer p...

متن کامل

P != NP Proof

This paper demonstrates that P ≠ NP. The way was to generalize the traditional definitions of the classes P and NP, to construct an artificial problem (a generalization to SAT: The XG-SAT, much more difficult than the former) and then to demonstrate that it is in NP but not in P (where the classes P and NP are generalized and called too simply P and NP in this paper, and then it is explained wh...

متن کامل

The Computational Complexity of the Kakuro Puzzle, Revisited

We present a new proof of NP-completeness for the problem of solving instances of the Japanese pencil puzzle Kakuro (also known as Cross-Sum). While the NP-completeness of Kakuro puzzles has been shown before [T. Seta. The complexity of CROSS SUM. IPSJ SIG Notes, AL-84:51–58, 2002], there are still two interesting aspects to our proof: we show NP-completeness for a new variant of Kakuro that ha...

متن کامل

Linear CNF formulas and satisfiability

In this paper, we study linear CNF formulas generalizing linear hypergraphs un-der combinatorial and complexity theoretical aspects w.r.t. SAT. We establish NP-completeness of SAT for the unrestricted linear formula class, and we show the equiv-alence of NP-completeness of restricted uniform linear formula classes w.r.t. SATand the existence of unsatisfiable uniform linear witne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008