Experimental Evidence for Maximal Surfaces in a 3 Dimensional Minkowski Space

نویسنده

  • R. M. Kiehn
چکیده

Conventional physical dogma, justified by the local success of Newtonian dynamics for particles, assigns a Euclidean metric with signature (plus, plus, plus) to the three spatial dimensions. Minimal surfaces are of zero mean curvature and negative Gauss curvature in a Euclidean space, which supports affine evolutionary processes. However, experimental evidence now indicates that the non-affine dynamics of a fluid admits a better description in terms of a 3 dimensional space with a Minkowski metric of signature (plus, plus, minus). Three dimensional spaces with a Minkowski metric admit maximal surfaces of zero mean curvature, with conical or isolated singularities, and with positive Gauss curvature, in contrast to Euclidean 3D metrics. Such properties are also associated with the Hopf map, which generates two surfaces of zero mean curvature and positive Gauss curvature in a 4D Euclidean space. Falaco Solitons, easily created as topological defects in a swimming pool, are experimental artifacts of maximal surfaces (of zero mean curvature, but positive Gauss curvature) in a 3D Minkowski space. The topological defects in the otherwise flat surface of fluid density discontinuity appear as a pair of zero mean curvature surfaces, with a conical singularity at each end. The two conical singularies of the Falaco Soliton pair appear to be connected with a 1D string under tension. The singular conical points are associated with rotation (not translation)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

Translation Surfaces of the Third Fundamental Form in Lorentz-Minkowski Space

In this paper we study translation surfaces with the non-degenerate third fundamental form in Lorentz- Minkowski space $mathbb{L}^{3}$. As a result, we classify translation surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form $III$ on the surface.

متن کامل

A Weierstrass representation for linear Weingarten spacelike surfaces of maximal type in the Lorentz–Minkowski space

In this work we extend the Weierstrass representation for maximal spacelike surfaces in the 3-dimensional Lorentz–Minkowski space to spacelike surfaces whose mean curvature is proportional to its Gaussian curvature (linear Weingarten surfaces of maximal type). We use this representation in order to study the Gaussian curvature and the Gauss map of such surfaces when the immersion is complete, p...

متن کامل

Canonical Weierstrass Representation of Minimal and Maximal Surfaces in the Three-dimensional Minkowski Space

We prove that any minimal (maximal) strongly regular surface in the threedimensional Minkowski space locally admits canonical principal parameters. Using this result, we find a canonical representation of minimal strongly regular time-like surfaces, which makes more precise the Weierstrass representation and shows more precisely the correspondence between these surfaces and holomorphic function...

متن کامل

Nonorientable maximal surfaces in the Lorentz-Minkowski 3-space

The geometry and topology of complete nonorientable maximal surfaces with lightlike singularities in the Lorentz-Minkowski 3-space is studied. Some topological congruence formulae for surfaces of this kind are obtained. As a consequence, some existence and uniqueness results for maximal Möbius strips and maximal Klein bottles with one end are proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005