Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos.

نویسندگان

  • Honglin Liu
  • Jin-Moon Kim
  • Fugaku Aoki
چکیده

Epigenetic modifications of the genome, such as covalent modification of histone residues, ensure appropriate gene activation during pre-implantation development, and are probably involved in the asymmetric reprogramming of the parental genomes after fertilization. We investigated the methylation patterns of histone H3 at lysine 9 (H3/K9), and the regulatory mechanism involved in the asymmetric remodeling of parental genomes during early preimplantation development in mice. Immunocytochemistry with an antibody that specifically recognizes methylated H3/K9 showed a very weak or absent methylation signal in the male pronucleus, whereas a distinct methylation signal was detected in the female pronucleus. This asymmetric H3/K9 methylation pattern in the different parental genomes persisted until the two-cell stage. However, de novo methylation of H3/K9 occurred and the asymmetry was lost during the four-cell stage. The unmethylated male pronucleus underwent de novo methylation when it was transferred into enucleated GV- or MII-stage oocytes, which suggests that histone H3 methylase is active before fertilization, but not afterwards, and that the asymmetric methylation pattern is generated by this change in methylase activity in the cytoplasm after fertilization. Thus, histone H3 is methylated only in the maternal chromosomes, which are present in the oocytes before fertilization, and is not methylated in the paternal chromosomes, which are absent. The maintenance of asymmetric H3/K9 methylation patterns in early embryos is an active process that depends on protein synthesis and zygotic transcription, as de novo methylation in the male pronucleus occurred when either protein synthesis or gene expression was inhibited by cycloheximide or alpha-amanitin, respectively. In addition, corresponding de novo methylation of H3/K9 and DNA occurred when the male pronucleus was transferred to an enucleated GV oocyte. Our results suggest that H3/K9 methylation is an epigenetic marker of parental genome origin during early preimplantation development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos.

Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 i...

متن کامل

Dynamic alterations of specific histone modifications during early murine development.

In order to investigate whether covalent histone modifications may be involved in early embryonic reprogramming events, changes in global levels of a series of histone tail modifications were studied during oocyte maturation and pre-implantation mouse development using indirect immunofluorescence and scanning confocal microscopy. Results showed that histone modifications could be classified int...

متن کامل

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

Changes in Histone H3 Lysine 36 Methylation in Porcine Oocytes and Preimplantation Embryos

Histone H3 lysine 36 (H3K36) methylation is known to be associated with transcriptionally active genes, and is considered a genomic marker of active loci. To investigate the changes in H3K36 methylation in pig, we determined the mono-, di-, and tri-methylations of H3K36 (H3K36me1, H3K36me2 and H3K36me3, respectively) in porcine fetal fibroblasts, oocytes and preimplantation embryos by immunocyt...

متن کامل

G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis.

Covalent modification of histone tails is crucial for transcriptional regulation, mitotic chromosomal condensation, and heterochromatin formation. Histone H3 lysine 9 (H3-K9) methylation catalyzed by the Suv39h family proteins is essential for establishing the architecture of pericentric heterochromatin. We recently identified a mammalian histone methyltransferase (HMTase), G9a, which has stron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 131 10  شماره 

صفحات  -

تاریخ انتشار 2004