Modeling the climate response to a massive methane release from gas hydrates
نویسندگان
چکیده
[1] The climate response to a massive release of methane from gas hydrates is simulated in two 2500-year-long numerical experiments performed with a three-dimensional, global coupled atmosphere-sea ice-ocean model of intermediate complexity. Two different equilibrium states were used as reference climates; the first state with preindustrial forcing conditions and the second state with a four times higher atmospheric CO2 concentration. These climates were perturbed by prescribing a methane emission scenario equivalent to that computed for the Paleocene/Eocene thermal maximum (PETM; 55.5 Ma), involving a sudden release of 1500 Gt of carbon into the atmosphere in 1000 years. In both cases, this produced rapid atmospheric warming (up to 10 C at high latitudes) and a reorganization of the global overturning ocean circulation. In the ocean, maximum warming (2–4 C) occurred at intermediate depths where methane hydrates are stored in the upper slope sediments, suggesting that further hydrate instability could result from the prescribed scenario.
منابع مشابه
Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change
Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid tempera...
متن کاملGas hydrates: past and future geohazard?
Gas hydrates are ice-like deposits containing a mixture of water and gas; the most common gas is methane. Gas hydrates are stable under high pressures and relatively low temperatures and are found underneath the oceans and in permafrost regions. Estimates range from 500 to 10,000 giga tonnes of carbon (best current estimate 1600-2000 GtC) stored in ocean sediments and 400 GtC in Arctic permafro...
متن کاملPostglacial response of Arctic Ocean gas hydrates to climatic amelioration.
Seafloor methane release due to the thermal dissociation of gas hydrates is pervasive across the continental margins of the Arctic Ocean. Furthermore, there is increasing awareness that shallow hydrate-related methane seeps have appeared due to enhanced warming of Arctic Ocean bottom water during the last century. Although it has been argued that a gas hydrate gun could trigger abrupt climate c...
متن کاملTimescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet
Gas hydrates stored on continental shelves are susceptible to dissociation triggered by environmental changes. Knowledge of the timescales of gas hydrate dissociation and subsequent methane release are critical in understanding the impact of marine gas hydrates on the ocean-atmosphere system. Here we report a methane efflux chronology from five sites, at depths of 220-400 m, in the southwest Ba...
متن کاملMechanical instability of monocrystalline and polycrystalline methane hydrates
Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we...
متن کامل