Empirical intrinsic geometry for nonlinear modeling and time series filtering.

نویسندگان

  • Ronen Talmon
  • Ronald R Coifman
چکیده

In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Modeling and Processing Using Empirical Intrinsic Geometry with Application to Biomedical Imaging

In this paper we present a method for intrinsic modeling of nonlinear filtering problems without a-priori knowledge using empirical information geometry and empirical differential geometry. We show that the inferred model is noise resilient and invariant under different random observations and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired me...

متن کامل

Empirical Intrinsic Modeling of Signals and Information Geometry

many natural and real-world applications, the measured signals are controlled by underlying processes or drivers. As a result, these signals exhibit highly redundant representations and their temporal evolution can be compactly described by a dynamical process on a low-dimensional manifold. In this paper, we propose a graph-based method for revealing the low-dimensional manifold and inferring t...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Noise Reduction for Nonlinear Nonstationary Time Series Data using Averaging Intrinsic Mode Function

A novel noise filtering algorithm based on averaging Intrinsic Mode Function (aIMF), which is a derivation of Empirical Mode Decomposition (EMD), is proposed to remove white-Gaussian noise of foreign currency exchange rates that are nonlinear nonstationary times series signals. Noise patterns with different amplitudes and frequencies were randomly mixed into the five exchange rates. A number of...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 31  شماره 

صفحات  -

تاریخ انتشار 2013