Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography
نویسندگان
چکیده
We investigated how well repetitive finger tapping movements can be decoded from scalp electroencephalography (EEG) signals. A linear decoder with memory was used to infer continuous index finger angular velocities from the low-pass filtered fluctuations of the amplitude of a plurality of EEG signals distributed across the scalp. To evaluate the accuracy of the decoder, the Pearson's correlation coefficient (r) between the observed and predicted trajectories was calculated in a 10-fold cross-validation scheme. We also assessed attempts to decode finger kinematics from EEG data that was cleaned with independent component analysis (ICA), EEG data from peripheral sensors, and EEG data from rest periods. A genetic algorithm (GA) was used to select combinations of EEG channels that maximized decoding accuracies. Our results (lower quartile r = 0.18, median r = 0.36, upper quartile r = 0.50) show that delta-band EEG signals contain useful information that can be used to infer finger kinematics. Further, the highest decoding accuracies were characterized by highly correlated delta band EEG activity mostly localized to the contralateral central areas of the scalp. Spectral analysis of EEG also showed bilateral alpha band (8-13 Hz) event related desynchronizations (ERDs) and contralateral beta band (20-30 Hz) event related synchronizations (ERSs) localized over central scalp areas. Overall, this study demonstrates the feasibility of decoding finger kinematics from scalp EEG signals.
منابع مشابه
Single trial discrimination of individual finger movements on one hand: A combined MEG and EEG study
It is crucial to understand what brain signals can be decoded from single trials with different recording techniques for the development of Brain-Machine Interfaces. A specific challenge for non-invasive recording methods are activations confined to small spatial areas on the cortex such as the finger representation of one hand. Here we study the information content of single trial brain activi...
متن کاملEEG resolutions in detecting and decoding finger movements from spectral analysis
Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as ind...
متن کاملDecoding Brain Activation from Ipsilateral Cortex using ECoG Signals in Humans
OF THE THESIS Decoding Brain Activation from Ipsilateral Cortex using ECoG Signals in Humans by Yuzong Liu Master of Science in Computer Science Washington University in St. Louis, 2011 Research Advisor: Professor Kilian Weinberger Today, learning from the brain is the most challenging issue in many areas. Neural scientists, computer scientists, and engineers are collaborating in this broad res...
متن کاملDecoding Individual Finger Movements from One Hand Using Human EEG Signals
Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has be...
متن کاملTowards Decoding 3D Finger Trajectories from EEG
Brain-Machine interfaces and neural prosthesis use the electrical activity generated by cortical neurons in the brain for controlling external devices such as robotic arms. While many research is based on the invasive recording of the brain electrical activity, very few studies have addressed the possibility of generating the control from non-invasive measurements. In this work we study the 3D ...
متن کامل