Re-Docking Scheme for Generating Near-Native Protein Complexes by Assembling Residue Interaction Fingerprints

نویسندگان

  • Nobuyuki Uchikoga
  • Yuri Matsuzaki
  • Masahito Ohue
  • Takatsugu Hirokawa
  • Yutaka Akiyama
چکیده

Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used. Therefore, we have developed a method for generating near-native docking poses by introducing a re-docking process. We devised a method for calculating the profile of interaction fingerprints by assembling protein complexes after determining certain core-protein complexes. For our analysis, we used 44 bound-state protein complexes selected from the ZDOCK benchmark dataset ver. 2.0, including some protein pairs none of which generated near-native poses in the docking process. Consequently, after the re-docking process we obtained profiles of interaction fingerprints, some of which yielded near-native poses. The re-docking process involved searching for possible docking poses in a restricted area using the profile of interaction fingerprints. If the profile includes interactions identical to those in the native complex, we obtained near-native docking poses. Accordingly, near-native poses were obtained for all bound-state protein complexes examined here. Application of interaction fingerprints to the re-docking process yielded structures with more native interactions, even when a docking pose, obtained following the initial docking process, contained only a small number of native amino acid interactions. Thus, utilization of the profile of interaction fingerprints in the re-docking process yielded more near-native poses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residue Conservation Information for Generating near-native Structures in Protein-protein Docking

MOTIVATION Protein-protein docking algorithms typically generate large numbers of possible complex structures with only a few of them resembling the native structure. Recently (Duan et al., Protein Sci, 14:316-218, 2005), it was observed that the surface density of conserved residue positions is high at the interface regions of interacting protein surfaces, except for antibody-antigen complexes...

متن کامل

Protein-protein docking with multiple residue conformations and residue substitutions.

The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side-chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformation...

متن کامل

Structural Prediction of Protein-RNA Interaction by Computational Docking with Propensity-Based Statistical Potentials

Despite the importance of protein-RNA interactions in the cellular context, the number of available protein-RNA complex structures is still much lower than those of other biomolecules. As a consequence, few computational studies have been addressed towards protein-RNA complexes, and to our knowledge, no systematic benchmarking of protein-RNA docking has been reported. In this study we have extr...

متن کامل

Physicochemical and residue conservation calculations to improve the ranking of protein-protein docking solutions.

Many protein-protein docking algorithms generate numerous possible complex structures with only a few of them resembling the native structure. The major challenge is choosing the near-native structures from the generated set. Recently it has been observed that the density of conserved residue positions is higher at the interface regions of interacting protein surfaces, except for antibody-antig...

متن کامل

Structural Interface Parameters Are Discriminatory in Recognising Near-Native Poses of Protein-Protein Interactions

Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013