Complete Pascal Interpolation Scheme For Approximating The Geometry Of A Quadrilateral Element
نویسنده
چکیده
Abstract This paper applies a complete parametric set for approximating the geometry of a quadrilateral element. The approximation basis used is a complete Pascal polynomial of second order with six free parameters. The interpolation procedure is a natural interpolation scheme. The six free parameters are determined using the natural coordinates of the four nodal points (vertices) of the quadrilateral element and the two intersections points of the lines crossing every two opposite edges (poles). The presented scheme recovers the well known Lagrangian interpolation scheme, when every two opposite edges are parallel. A third order Pascal interpolation scheme is also presented. The four midpoints of the four edges in addition to the six nodal point from the second order case are used as significant nodal points. It is expected to reflect the geometry properties better since the shape functions are complete.
منابع مشابه
Nonlinear Bending Analysis of Functionally Graded Plates Using SQ4T Elements based on Twice Interpolation Strategy
This paper develops a computational model for nonlinear bending analysis of functionally graded (FG) plates using a four-node quadrilateral element SQ4T within the context of the first order shear deformation theory (FSDT). In particular, the construction of the nonlinear geometric equations are based on Total Lagrangian approach in which the motion at the present state compared with the initia...
متن کاملAn Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملNonconforming H-Galerkin Mixed Finite Element Method for Pseudo-Hyperbolic Equations
Based on H-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of fini...
متن کاملAn Approximating-Interpolatory Subdivision scheme
In the last decade, study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control mesh consisting of both quads and triangles and produces finer and finer meshes with quads and triangles (Fig. 1). Designers often want to model certain regions with quad meshes and others with triangle meshes to get better visual quality ...
متن کاملVibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods
Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.04765 شماره
صفحات -
تاریخ انتشار 2017