Experience-Dependent Regulation of Dentate Gyrus Excitability by Adult-Born Granule Cells.
نویسندگان
چکیده
UNLABELLED Behavioral studies have established a role for adult-born dentate granule cells in discriminating between similar memories. However, it is unclear how these cells mediate memory discrimination. Excitability is enhanced in maturing adult-born neurons, spurring the hypothesis that the activity of these cells "directly" encodes and stores memories. An alternative hypothesis posits that maturing neurons "indirectly" contribute to memory encoding by regulating excitation-inhibition balance. We evaluated these alternatives by using dentate-sensitive active place avoidance tasks to assess experience-dependent changes in dentate field potentials in the presence and absence of neurogenesis. Before training, X-ray ablation of adult neurogenesis-reduced dentate responses to perforant-path stimulation and shifted EPSP-spike coupling leftward. These differences were unchanged after place avoidance training with the shock zone in the initial location, which both groups learned to avoid equally well. In contrast, sham-treated mice decreased dentate responses and shifted EPSP-spike coupling leftward after the shock zone was relocated, whereas X-irradiated mice failed to show these changes in dentate function and were impaired on this test of memory discrimination. During place avoidance, excitation-inhibition coupled neural synchrony in dentate local field potentials was reduced in X-irradiated mice, especially in the θ band. The difference was most prominent during conflict learning, which is impaired in the X-irradiated mice. These findings indicate that maturing adult-born neurons regulate both functional network plasticity in response to memory discrimination and dentate excitation-inhibition coordination. The most parsimonious interpretation of these results is that adult neurogenesis indirectly regulates hippocampal information processing. SIGNIFICANCE STATEMENT Adult-born neurons in the hippocampal dentate gyrus are important for flexibly using memories, but the mechanism is controversial. Using tests of hippocampus-dependent place avoidance learning and dentate electrophysiology in mice with normal or ablated neurogenesis, we find that maturing adult-born neurons are crucial only when memory must be used flexibly, and that these neurons regulate dentate gyrus synaptic and spiking responses to neocortical input rather than directly storing information, as has been proposed. A day after learning to avoid the initial or changed locations of shock, the dentate synaptic responses are enhanced or suppressed, respectively, unlike mice lacking adult neurogenesis, which did not change. The contribution of adult neurogenesis to memory is indirect, by regulating dentate excitation-inhibition coupling.
منابع مشابه
From pattern separation to mood regulation: multiple roles for developmental signals in the adult dentate gyrus
OVERVIEW OF ADULT HIPPOCAMPAL NEUROGENESIS The dentate gyrus represents a unique system for the study of interactions between neuronal development and experience. While this hippocampal subfield has been extensively investigated in relationship to the ongoing process of adult neurogenesis, the mnemonic contributions of mature granule neurons have remained enigmatic. Much of the rationale for fo...
متن کاملAdult neurogenesis modifies excitability of the dentate gyrus
Adult-born dentate granule neurons contribute to memory encoding functions of the dentate gyrus (DG) such as pattern separation. However, local circuit-mechanisms by which adult-born neurons partake in this process are poorly understood. Computational, neuroanatomical and electrophysiological studies suggest that sparseness of activation in the granule cell layer (GCL) is conducive for pattern ...
متن کاملThe Effect of Paxilline on Early Alterations of Electrophysiological Properties of Dentate Gyrus Granule Cells in Pilocarpine-Treated Rats
The dentate gyrus of hippocampus has long been considered as a focal point for studies on mechanisms responsible for the development of temporal lobe epilepsy (TLE). Change in intrinsic properties of dentate gyrus granule cells (GCs) has been considered as an important factor responsible in temporal lobe seizures. In this study, we evaluated the intrinsic properties of GCs, during acute phase o...
متن کاملThe Effect of Paxilline on Early Alterations of Electrophysiological Properties of Dentate Gyrus Granule Cells in Pilocarpine-Treated Rats
The dentate gyrus of hippocampus has long been considered as a focal point for studies on mechanisms responsible for the development of temporal lobe epilepsy (TLE). Change in intrinsic properties of dentate gyrus granule cells (GCs) has been considered as an important factor responsible in temporal lobe seizures. In this study, we evaluated the intrinsic properties of GCs, during acute phase o...
متن کاملEnvironment Matters: Synaptic Properties of Neurons Born in the Epileptic Adult Brain Develop to Reduce Excitability
Neural progenitors in the adult dentate gyrus continuously produce new functional granule cells. Here we used whole-cell patch-clamp recordings to explore whether a pathological environment influences synaptic properties of new granule cells labeled with a GFP-retroviral vector. Rats were exposed to a physiological stimulus, i.e., running, or a brain insult, i.e., status epilepticus, which gave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 33 شماره
صفحات -
تاریخ انتشار 2015