An efficient and highly accurate solver for multi-body acoustic scattering problems involving rotationally symmetric scatterers
نویسندگان
چکیده
A numerical method for solving the equations modeling acoustic scattering in three dimensions is presented. The method is capable of handling several dozen scatterers, each of which is several wave-lengths long, on a personal work station. Even for geometries involving cavities, solutions accurate to seven digits or better were obtained. The method relies on a Boundary Integral Equation formulation of the scattering problem, discretized using a high-order accurate Nyström method. A hybrid iterative/direct solver is used in which a local scattering matrix for each body is computed, and then GMRES, accelerated by the Fast Multipole Method, is used to handle reflections between the scatterers. The main limitation of the method described is that it currently applies only to scattering bodies that are rotationally symmetric.
منابع مشابه
Analysis of Radial Baffle Effects on Acoustic Characteristics of a Combustion Chamber
An efficient finite volume approach has been used to develop a three dimensional Helmholtz acoustic solver for complex geometries. This acoustic solver was utilized to obtain characteristic mode shapes and frequencies of a baffled combustion chamber. An experimental setup, including stationary and moving sensors, has also been used to measure these quantities for the same model combustion chamb...
متن کاملElastic Wave Scattering from Multiple and Odd Shaped Flaws
Using the T-Matrix or Null Field method elastic wave scattering from the following geometries have been studied {a) Rotationally symmetric configurations consisting of two spheroidal cavities separated by a finite distance and with different eccentricities. Exact calculations are compared with single scattering approximations. The frequency spectra are interpreted for various scattering geometr...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملThermoelastic Fracture Parameters for Anisotropic Plates
This paper deals with the determination of the effect of varying material properties on the value of the stress intensity factors, KI and KII, for anisotropic plates containing cracks and subjected to a temperature change. Problems involving cracks and body forces, as well as thermal loads are analysed. The quadratic isoperimetric element formulation is utilized, and SIFs may be directly obtain...
متن کاملSimulation of Strap-On Boosters Separation in the Atmosphere
A numerical dynamic-aerodynamic interface for simulating the separation dynamics of constrained strap-on boosters jettisoned in the atmosphere is presented. A 6-DOF multi body dynamic solver ،using Constraint Force Equation Methodology is coupled with a numerical time dependent Euler flow solver. An automatic dynamic mesh updating procedure is employed using smoothing and l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 69 شماره
صفحات -
تاریخ انتشار 2015