Adaptive automata model for learning opponent behavior based on genetic algorithms
نویسندگان
چکیده
The purpose of this research is to study how genetic algorithms (GA's) are applied in the field of Game Theory. GA's are effective approaches for machine learning and optimization problems. In this work, genetic algorithm is utilized to determine the behavior of an opponent in Prisoners’ Dilemma. The opponent behavior will be modeled by means of adaptive automaton. The basic problem of this study is the well-known Prisoner Dilemma. The primary purpose of this research is to determine the opponent behavior towards finding a better strategy to be followed by the player, since the best strategy to be followed depends on the opponent behavior. The results of our proposed model showed the capability of our model to identify the opponent model efficiently. Based on the provided knowledge about the opponent model, the dynamic strategy showed better results when compared to other well-known strategies.
منابع مشابه
Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کامل4. Experimentation: the Effect of Exploration on the Agent's Performance
Model-based learning of interaction strategies in repeated-games has received a lot of attention in the game-theory literature. Gilboa & Samet [10] deal with bounded regular players. They describe a model-based learning strategy for repeated games that learns the best response against any regular strategy. Their procedure enumerates the set of all automata and chooses the current opponent model...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کامل