Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring.

نویسندگان

  • Ramachandram Badugu
  • Joseph R Lakowicz
  • Chris D Geddes
چکیده

The synthesis, characterization, and spectral properties of strategically designed boronic acid containing fluorescent sensors, o-, m-, p-BMOQBA, for the potential detection of tear glucose concentrations when immobilized in plastic disposable contact lenses is described. The new probes, BMOQBAs, consist of the 6-methoxyquinolinium nucleus as a fluorescent indicator, and the boronic acid moiety as a glucose chelating group. A control compound BMOQ, which has no boronic acid group and therefore does not bind monosaccharides has also been prepared. In this paper, we show that structural design considerations of the new probes have afforded for their compatibility within the lenses, with reduced probe sugar-bound pK(a) favorable with the mildly acidic lens environment. In addition, the new probes are readily water soluble, have high quantum yields, and can be prepared by a simple one-step synthetic procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens.

We have tested the feasibility of tear glucose sensing using a daily, disposable contact lens embedded with boronic acid-containing fluorophores as a potential alternative to current invasive glucose-monitoring techniques. Our findings show that our approach may, indeed, be suitable for the continuous monitoring of tear glucose levels in the range 50-500 microM, which track blood glucose levels...

متن کامل

Fluorescence sensors for monosaccharides based on the 6-methylquinolinium nucleus and boronic acid moiety: potential application to ophthalmic diagnostics.

Continuous monitoring of glucose levels in human physiology is important for the long-term management of diabetes. New signaling methods/probes may provide an improved technology to monitor glucose and other physiologically important analytes. The glucose sensing probes, BMQBAs, fabricated using the 6-methylquinolinium moiety as a fluorescent indicator, and boronic acid as a chelating group, ma...

متن کامل

Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions.

Continuous physiological monitoring of electrolytes and small molecules such as glucose, creatinine, and urea is currently unavailable but achieving such a capability would be a major milestone for personalized medicine. Optode-based nanosensors are an appealing analytical platform for designing in vivo monitoring systems. In addition to the necessary analytical performance, such nanosensors mu...

متن کامل

Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes.

We describe the pH response of a set of isomeric water-soluble fluorescent probes based on both the 6-aminoquinolinium and boronic acid moieties. These probes show spectral shifts and intensity changes with pH, in a wavelength-ratiometric and colorimetric manner. Subsequently, changes in pH can readily be determined around the physiological level. Although boronic acid containing probes are kno...

متن کامل

Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent dio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2005