A nanosecond molecular dynamics study of antiparallel d(G)7 quadruplex structures: effect of the coordinated cations.
نویسندگان
چکیده
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G7) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of approximately 1.5 A from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.
منابع مشابه
Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes
Cations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all-atom molecular dynamics simulations with explicit solvent to analyse the mechanical unfolding of representative intramolecular G-quadruplex structures: a parallel, a hybrid and an antiparallel DNA and a parallel RNA, in the presence o...
متن کاملNMR structure refinement and dynamics of the K+-[d(G3T4G3)]2 quadruplex via particle mesh Ewald molecular dynamics simulations.
The solution structure and dynamical properties of the potassium-stabilized, hairpin dimer quadruplex formed by the oligonucleotide d(G3T4G3) have been elucidated by a combination of high-resolution NMR and molecular dynamics simulations. Refinement calculations were carried out both in vacuo, without internally coordinated K+ cations, and in explicit water, with internally coordinated K+ catio...
متن کاملIn silico screening of G-Quadruplex Structures in Wilms tumor 1 Gene Promoter
Introduction: X-ray diffraction studies have revealed that guanines in a DNA stands may be arranged in quartet and form a structure called G-quadruplexs. Bioinformatics studies suggested the formation of G-quadruplex structure in human crucial genes, including Wilms tumor 1 (WT1). The aim of this study was to in silico analysis of the guanine-rich sequence in the promoter region of the WT1 gene...
متن کاملDirect NMR detection of the "invisible" alkali metal cations tightly bound to G-quadruplex structures.
We report the first direct solution NMR detection of the alkali metal cations (23Na+, 39K+, and 87Rb+) residing inside G-quadruplex channel structures formed by guanosine 5'-monophosphate and a DNA oligomer, d(TG4T). In solution, these channel alkali metal cations are tightly bound to the G-quadruplex structure and have been considered to be "invisible" to NMR spectroscopy for many years. Our f...
متن کاملResolution of a structural competition involving dimeric G-quadruplex and its C-rich complementary strand
The resolution of the dimeric intermolecular G-quadruplex/duplex competition of the telomeric DNA sequence 5'-TAG GGT TAG GGT-3' and of its complementary 5' ACC CTA ACC CTA-3' is reported. To achieve this goal, melting experiments of both sequences and of the mixtures of these sequences were monitored by molecular absorption, molecular fluorescence and circular dichroism spectroscopies. Molecul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular structure & dynamics
دوره 18 5 شماره
صفحات -
تاریخ انتشار 2001