First Result on Arabic Neural Machine Translation
نویسندگان
چکیده
Neural machine translation has become a major alternative to widely used phrase-based statistical machine translation. We notice however that much of research on neural machine translation has focused on European languages despite its language agnostic nature. In this paper, we apply neural machine translation to the task of Arabic translation (Ar↔En) and compare it against a standard phrase-based translation system. We run extensive comparison using various configurations in preprocessing Arabic script and show that the phrase-based and neural translation systems perform comparably to each other and that proper preprocessing of Arabic script has a similar effect on both of the systems. We however observe that the neural machine translation significantly outperform the phrase-based system on an out-of-domain test set, making it attractive for real-world deployment.
منابع مشابه
A Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملStatistical Machine Translation Features with Multitask Tensor Networks
We present a three-pronged approach to improving Statistical Machine Translation (SMT), building on recent success in the application of neural networks to SMT. First, we propose new features based on neural networks to model various nonlocal translation phenomena. Second, we augment the architecture of the neural network with tensor layers that capture important higher-order interaction among ...
متن کاملHybrid Word-Character Neural Machine Translation for Modern Standard Arabic
Traditional neural machine translation architectures use a word-level approach that assumes all important words have enumerable and relatively frequent surface forms. This assumption is invalid for the large number of non-analytic languages that form new words on the basis of complex morphological processes. Contributing to the quest of finding a universalist architecture that performs well for...
متن کاملTranslation Modeling with Bidirectional Recurrent Neural Networks
This work presents two different translation models using recurrent neural networks. The first one is a word-based approach using word alignments. Second, we present phrase-based translation models that are more consistent with phrasebased decoding. Moreover, we introduce bidirectional recurrent neural models to the problem of machine translation, allowing us to use the full source sentence in ...
متن کاملQCRI’s Machine Translation Systems for IWSLT’16
This paper describes QCRI’s machine translation systems for the IWSLT 2016 evaluation campaign. We participated in the Arabic→English and English→Arabic tracks. We built both Phrase-based and Neural machine translation models, in an effort to probe whether the newly emerged NMT framework surpasses the traditional phrase-based systems in Arabic-English language pairs. We trained a very strong ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.02680 شماره
صفحات -
تاریخ انتشار 2016