Electrochemical Properties of an Na4Mn9O18-Reduced Graphene Oxide Composite Synthesized via Spray Drying for an Aqueous Sodium-Ion Battery

نویسندگان

  • Fuxing Yin
  • Zhengjun Liu
  • Yan Zhao
  • Yuting Feng
  • Yongguang Zhang
چکیده

An aqueous sodium ion battery (ASIB) with metal Zn as anode and Na₄Mn₉O18-reduced graphene oxide (Na₄Mn₉O18-RGO) as cathode has been developed. In this work, spherical Na₄Mn₉O18-RGO composite particles were prepared via spray drying. The aqueous battery exhibits stable cyclability and high specific capacities. Typically, a high initial discharge capacity of 61.7 mAh·g-1 is attained at a high current rate of 4 C, and a stabilizing reversible capacity of 58.9 mAh·g-1 was obtained after 150 cycles. The network interlaced by RGO sheets provided fast electron conduction paths and structural stability to accommodate the mechanical stresses induced by sodium insertion and extraction, so the Na₄Mn₉O18-RGO electrode displayed superior electrochemical performance in the ASIB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect.

Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni...

متن کامل

Na4Mn9O18/Carbon Nanotube Composite as a High Electrochemical Performance Material for Aqueous Sodium-Ion Batteries

The aqueous sodium-ion battery (ASIB) is one of the promising new energy storage systems owing to the abundant resources of sodium as well as efficiency and safety of electrolyte. Herein, we report an ASIB system with Na4Mn9O18/carbon nanotube (NMO/CNT) as cathode, metal Zn as anode and a novel Na+/Zn2+ mixed ion as electrolyte. The NMO/CNT with microspherical structure is prepared by a simple ...

متن کامل

Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries

Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. Durin...

متن کامل

Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction

Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...

متن کامل

Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electroch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017