An Adaptive Learning Rate for Training Ring-Structured Recurrent Network
نویسندگان
چکیده
A new adaptive learning rate is proposed based on the Lya-punov stability theory for training the Ring-Structured Recurrent Network (RSRN). The adaptive rate is a suucient condition to guarantee the stability and the most rapid convergence of the RSRN dynamic backpropagation algorithm, and it is easily determined in a direct and non-trial manner. Examples of training the RSRN to predict time series are used to demonstrate the eeciency of the learning rate. It has been found that by usage of the adaptive learning rate, the RSRN needs much smaller amount of training time and the resulting network could perform satisfactorily the prediction task.
منابع مشابه
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملCystoscopic Image Classification Based on Combining MLP and GA
In the past three decades, the use of smart methods in medical diagnostic systems has attracted the attention of many researchers. However, no smart activity has been provided in the field of medical image processing for diagnosis of bladder cancer through cystoscopy images despite the high prevalence in the world. In this paper, a multilayer neural network was applied to clas...
متن کاملParallel Implementation of Partially Connected Recurrent Networks
| Recurrent neural networks are suitable for solving problems with temporal extent e.g. speech recognition, time series prediction, sequence generation. The biggest problem is, however, its computational complexity during the training process. Using the well-known Real Time Recurrent Learning rule by D. Zipser and R.J. William 2], the training time of each epoch is of order O(n 4) where n is th...
متن کاملReal-Time Output Feedback Neurolinearization
An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations. Online training of neuroline...
متن کامل