In vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C-ketoprofen methyl ester.

نویسندگان

  • Miho Shukuri
  • Misato Takashima-Hirano
  • Keiko Tokuda
  • Tadayuki Takashima
  • Kiyoshi Matsumura
  • Osamu Inoue
  • Hisashi Doi
  • Masaaki Suzuki
  • Yasuyoshi Watanabe
  • Hirotaka Onoe
چکیده

UNLABELLED Cyclooxygenase (COX)-1 and -2 are prostanoid-synthesizing enzymes that play important roles in the regulation of neuroinflammation and in the development of neurodegenerative disorders. However, the specific functions of these isoforms are still unclear. We recently developed (11)C-labeled ketoprofen methyl ester as a PET probe that targets the COXs for imaging neuroinflammation, though its responsible isoform is yet to be determined. In the present study, we performed ex vivo and in vivo imaging studies with (11)C-ketoprofen methyl ester and determined the contributions of the COX isoforms during the neuroinflammatory process. METHODS To identify the COX isoform responsible for (11)C-ketoprofen methyl ester in the brain, we examined the ex vivo autoradiography of (11)C-ketoprofen methyl ester using COX-deficient mice. Time-dependent changes in accumulation of (11)C-ketoprofen methyl ester during the neuroinflammatory process were evaluated by PET in rats with hemispheric neuroinflammation induced by intrastriatal injection of lipopolysaccharide or quinolinic acid. In both rat models, cell-type specificity of COX isoform expression during neuroinflammation was identified immunohistochemically. RESULTS Ex vivo autoradiographic analysis of COX-deficient mice revealed a significant reduction of (11)C-ketoprofen methyl ester accumulation only in COX-1-deficient mice, not COX-2-deficient mice. PET of rats after intrastriatal injection of lipopolysaccharide showed a significant increase in accumulation of (11)C-ketoprofen methyl ester in the inflamed area. This increase was evident at the early phase of 6 h, peaked at day 1, and then returned to basal levels by day 7. In addition, immunohistochemical analysis revealed that the population of activated microglia and macrophages was elevated at the early phase with COX-1 expression but not COX-2. A significant increase in (11)C-ketoprofen methyl ester accumulation was also observed at day 1 after intrastriatal injection of quinolinic acid, with increased COX-1-expressing activated microglia and macrophages. CONCLUSION We have identified (11)C-ketoprofen methyl ester as a COX-1-selective PET probe, and using this, we have also demonstrated a time-dependent expression of COX-1 in activated microglia and macrophages during the neuroinflammatory process in the living brain. Thus, COX-1 may play a crucial role in the pathology of neuroinflammation and might be a critical target for the diagnosis and therapy of neurodegenerative disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation

Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...

متن کامل

In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion.

A major challenge in the assessment of brain injury and its relationship to the ensuing functional deficits is the accurate delineation of the areas of damage. Here, we test the hypothesis that the anatomical distribution pattern of activated microglia, a normally dormant population of resident brain macrophages, can be used as a surrogate marker of neuronal injury not only at the primary lesio...

متن کامل

Diagnosis of Brain Tumors Using Amino Acid Transport PET Imaging With 18F- Fluciclovine: A Comparison Study With L-Methyl-11C-Methionine PET Imaging

Objective(s): 18F-fluciclovine (trans-1-amino-3-[18F] fluorocyclobutanecarboxylic acid, [FACBC]) is an artificial amino acid radiotracer used for positron emission tomography (PET) studies, which is metabolically stable in vivo and has a long half-life. It has already been shown that FACBC-PET is useful for glioma imaging. However, there have been no reports evaluating the efficiency of FACBC-P...

متن کامل

Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo.

The present study examined whether thrombin-induced microglial activation could contribute to death of dopaminergic neurons in the rat substantia nigra (SN) in vivo. Seven days after thrombin injection into the SN, tyrosine hydroxylase immunohistochemistry showed a significant loss of nigral dopaminergic neurons. In parallel, thrombin-activated microglia, visualized by immunohistochemical stain...

متن کامل

Effect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages

Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 52 7  شماره 

صفحات  -

تاریخ انتشار 2011