Fuzzy Hierarchical Clustering Applied for Quality Estimation in Manufacturing System
نویسندگان
چکیده
This paper develops a quality estimation method with the application of fuzzy hierarchical clustering. Quality estimation is essential to quality control and quality improvement as a precise estimation can promote a right decision-making in order to help better quality control. Normally the quality of finished products in manufacturing system can be differentiated by quality standards. In the real life situation, the collected data may be vague which is not easy to be classified and they are usually represented in term of fuzzy number. To estimate the quality of product presented by fuzzy number is not easy. In this research, the trapezoidal fuzzy numbers are collected in manufacturing process and classify the collected data into different clusters so as to get the estimation. Since normal hierarchical clustering methods can only be applied for real numbers, fuzzy hierarchical clustering is selected to handle this problem based on quality standards. Keywords—Quality Estimation, Fuzzy Quality Mean, Fuzzy Hierarchical Clustering, Fuzzy Number, Manufacturing system
منابع مشابه
ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملHierarchical Fuzzy Clustering Semantics (HFCS) in Web Document for Discovering Latent Semantics
This paper discusses about the future of the World Wide Web development, called Semantic Web. Undoubtedly, Web service is one of the most important services on the Internet, which has had the greatest impact on the generalization of the Internet in human societies. Internet penetration has been an effective factor in growth of the volume of information on the Web. The massive growth of informat...
متن کاملHierarchical Cluster Generation for Software Quality: A Comparative Approach
Abstract— Clustering is a powerful technique of data mining for extracting useful information from a set of data and classifies the data into several clusters based on similarity of the pattern. This paper presents the quality estimation for students’ projects data based on hierarchical clustering and fuzzy clustering using Min-Max method. From the experimental results it is seen the fuzzy clus...
متن کاملPerformance of Fuzzy ART neural network and hierarchical clustering for part–machine grouping based on operation sequences
The problem context for this study is one of identifying families of parts having a similar sequence of operations. This is a prerequisite for the implementation of cellular manufacturing, group technology, just-in-time manufacturing systems and for streamlining material flows in general. Given this problem context, this study develops an experimental procedure to compare the performance of a f...
متن کاملMulti-Output Adaptive Neuro-Fuzzy Inference System for Prediction of Dissolved Metal Levels in Acid Rock Drainage: a Case Study
Pyrite oxidation, Acid Rock Drainage (ARD) generation, and associated release and transport of toxic metals are a major environmental concern for the mining industry. Estimation of the metal loading in ARD is a major task in developing an appropriate remediation strategy. In this study, an expert system, the Multi-Output Adaptive Neuro-Fuzzy Inference System (MANFIS), was used for estimation of...
متن کامل