Hyperbolic Balance Laws with a Non Local Source
نویسندگان
چکیده
This paper is devoted to hyperbolic systems of balance laws with non local source terms. The existence, uniqueness and Lipschitz dependence proved here comprise previous results in the literature and can be applied to physical models, such as Euler system for a radiating gas and Rosenau regularization of the Chapman-Enskog expansion. 2000 Mathematics Subject Classification: 35L65, 76N15
منابع مشابه
Stability and Convergence of Relaxation Schemes to Hyperbolic Balance Laws via a Wave Operator
This article deals with relaxation approximations of nonlinear systems of hyperbolic balance laws. We introduce a class of relaxation schemes and establish their stability and convergence to the solution of hyperbolic balance laws before the formation of shocks, provided that we are within the framework of the compensated compactness method. Our analysis treats systems of hyperbolic balance law...
متن کاملBalance Laws: Non Local Mixed Systems and IBVPs
Scalar hyperbolic balance laws in several space dimensions play a central role in this thesis. First, we deal with a new class of mixed parabolic–hyperbolic systems on all Rn: we obtain the basic well–posedness theorems, devise an ad hoc numerical algorithm, prove its convergence and investigate the qualitative properties of the solutions. The extension of these results to bounded domains requi...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملSystems of Hyperbolic Conservation Laws with Memory
Global weak solutions of bounded variation to systems of balance laws with non-local source are constructed by the method of vanishing viscosity. Suitable dissipativeness assumptions are imposed on the source terms to assure convergence of the method. Under these hypotheses, the total variation remains uniformly bounded and integrable in time, the vanishing viscosity solutions are uniformly sta...
متن کاملUniqueness and Sharp Estimates on Solutions to Hyperbolic Systems with Dissipative Source
Global weak solutions of a strictly hyperbolic system of balance laws in one-space dimension were constructed (cf. Christoforou [C]) via the vanishing viscosity method under the assumption that the source term g is dissipative. In this article, we establish sharp estimates on the uniformly Lipschitz semigroup P generated by the vanishing viscosity limit in the general case which includes also n...
متن کامل