Decay of highly correlated spin states in a dipolar-coupled solid: NMR study of CaF2
نویسندگان
چکیده
We have measured the decay of NMR multiple quantum coherence intensities both under the internal dipolar Hamiltonian as well as when this interaction is effectively averaged to zero, in the cubic calcium fluoride CaF2 spin system and the pseudo-one-dimensional system of fluoroapatite. In calcium fluoride the decay rates depend both on the number of correlated spins in the cluster, as well as on the coherence number. For smaller clusters, the decays depend strongly on coherence number, but this dependence weakens as the size of the cluster increases. The same scaling was observed when the coherence distribution was measured in both the usual Zeeman or z basis and the x basis. The coherence decay in the one-dimensional fluoroapatite system did not change significantly as a function of the multiple quantum growth time, in contrast to the calcium fluoride case. While the growth of coherence orders is severely restricted in this case, the number of correlated spins should continue to grow, albeit more slowly. All coherence intensities were observed to decay as Gaussian functions in time. In all cases the standard deviation of the observed decay appeared to scale linearly with coherence number.
منابع مشابه
Exploring large coherent spin systems with solid state NMR
Solid state Nuclear Magnetic Resonance (NMR) allows us to explore a large coherent spin system and provides an ideal test-bed for studying strongly interacting multiplespin system in a large Hilbert space. In this thesis, we experimentally investigate the spin dynamics in a rigid lattice of dipolarly coupled nuclear spins using multiple quantum NMR spectroscopy. Encoding multiple quantum cohere...
متن کاملInvestigation of molecular motion of Cl-adamantane in the nanoprous zeolite by 13C NMR dipolar dephasing and variable contact time measurements
Dipolar-dephasing method provides some information about the strength of dipolar coupling in solids. Dipolar dephasing technique measures the time for a polarized carbon nucleus to lose its magnetization once the proton locking field is terminated. The dynamics of guest molecules adsorbed within the cavities and channels of nonporouszeolite strongly depend on the structure and chemical composit...
متن کاملInvestigation of molecular motion of Cl-adamantane in the nanoprous zeolite by 13C NMR dipolar dephasing and variable contact time measurements
Dipolar-dephasing method provides some information about the strength of dipolar coupling in solids. Dipolar dephasing technique measures the time for a polarized carbon nucleus to lose its magnetization once the proton locking field is terminated. The dynamics of guest molecules adsorbed within the cavities and channels of nonporouszeolite strongly depend on the structure and chemical composit...
متن کاملMulti-spin dynamics of the solid-state NMR Free Induction Decay
We present a new experimental investigation of the NMR free induction decay (FID) in a lattice of spin-1/2 nuclei in a strong Zeeman field. Following a π/2 pulse, evolution under the secular dipolar Hamiltonian preserves coherence number in the Zeeman eigenbasis, but changes the number of correlated spins in the state. The observed signal is seen to decay as single-spin, single-quantum coherenc...
متن کاملDecay of Rabi oscillations by dipolar-coupled dynamical spin environments.
We study the Rabi oscillations decay of a spin decohered by a spin bath whose internal dynamics is caused by dipolar coupling between the bath spins. The form and rate of decay as a function of the intrabath coupling is obtained analytically, and confirmed numerically. The complex form of decay smoothly varies from power law to exponential, and the rate changes nonmonotonically with the intraba...
متن کامل