A lower bound on dimension reduction for trees in \ell_1

نویسندگان

  • James R. Lee
  • Mohammad Moharrami
چکیده

There is a constant c > 0 such that for every ε ∈ (0, 1) and n > 1/ε, the following holds. Any mapping from the n-point star metric into l1 with bi-Lipschitz distortion 1 + ε requires dimension d > c log n ε log(1/ε) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Upper Bound on the First Zagreb Index in Trees

In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.

متن کامل

Dimension reduction for finite trees in l1

We show that every n-point tree metric admits a (1 + ε)-embedding into ` C(ε) logn 1 , for every ε > 0, where C(ε) ≤ O ( ( 1ε ) 4 log 1ε ) ) . This matches the natural volume lower bound up to a factor depending only on ε. Previously, it was unknown whether even complete binary trees on n nodes could be embedded in ` O(logn) 1 with O(1) distortion. For complete d-ary trees, our construction ach...

متن کامل

On trees attaining an upper bound on the total domination number

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

متن کامل

Dimension Reduction for Finite Trees in ℓ 1

We show that every n-point tree metric admits a (1 + ε)-embedding into ` C(ε) logn 1 , for every ε > 0, where C(ε) ≤ O ( ( 1ε ) 4 log 1ε ) ) . This matches the natural volume lower bound up to a factor depending only on ε. Previously, it was unknown whether even complete binary trees on n nodes could be embedded in ` O(logn) 1 with O(1) distortion. For complete d-ary trees, our construction ach...

متن کامل

Upper bounds for noetherian dimension of all injective modules with Krull dimension

‎In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings‎. ‎In particular‎, ‎we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1302.6542  شماره 

صفحات  -

تاریخ انتشار 2013